精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数

(1)当的取值范围;

(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。

 

【答案】

(1);(2)这样的不存在。

【解析】

试题分析:(1)根据对数函数有意义可知,真数部分上恒成立,即,得到a的范围。

(2)假设存在这样的

,且有,可知外层为增函数,得到a的范围,进而求解最值。

解:(1),    上恒成立,即

     …………..4分

(2)假设存在这样的

,且有………..6分

在区间内为增函数,     即………………8分

      …………..10分

内,所以这样的不存在……………12分

考点:本题主要考查对数函数的定义域和复合函数单调性的运用求解最值。

点评:解决该试题的关键是根据已知中恒有意义说明了最小值处 函数值大于零,同时根据存在a使得函数递减,则利用同增异减的思想得到a的取值情况。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案