精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,a,b,c分别为内角A,B,C的对边,2asin A=(2b+c)sin B+(2c+b)sin C.

且sin B+sin C=1,则△ABC是(  )

A. 等腰钝角三角形 B. 等腰直角三角形 C. 钝角三角形 D. 直角三角形

【答案】A

【解析】

先利用正弦定理余弦定理化简2asin A=(2b+c)sin B+(2c+b)sin C得A=120°,再利用三角恒等变换化简sin B+sin C=1得B=30°,C=30°,即得解.

由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.

由余弦定理得a2=b2+c2-2bccos A,故cos A=-,A=120°.

∴B+C=60°,则C=60°-B,

∴sin B+sin C=sin B+sin(60°-B)=sin B+cos B-sin B

sin B+cos B=sin(B+60°)=1,

∴B=30°,C=30°.

∴△ABC是等腰的钝角三角形.

故答案为:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.

(1)若 = =1,求 的值;
(2)若EF2=FAFB,证明:EF∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x为解释变量,y为预报变量,作出散点图;

(2)yx之间的线性回归方程,对于基本苗数56.7预报其有效穗;

(3)计算各组残差,并计算残差平方和;

(4)R2,并说明残差变量对有效穗的影响占百分之几.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是互不相等的非零实数,求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (﹣3x2+3f′(2))dx,则f′(2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其

范围为[0,10],分别有五个级别:T[0,2)畅通;T[2,4)基本畅通; T[4,6)轻度拥堵; T[6,8)中度拥堵;T[8,10]严重拥堵晚高峰时段(T2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.

(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?

(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个容积为2π m3的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为 ( )

A. 0.5 m,1 m B. 1 m,1 m

C. 1 m,2 m D. 2 m,2 m

查看答案和解析>>

同步练习册答案