精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式的两个焦点分别为F1(-1,0),F2(1,0),长半轴长为数学公式
(1)(i)求椭圆C的方程;
(ii)类比结论“过圆数学公式上任一点(x0,y0)的切线方程是数学公式”,归纳得出:过椭圆数学公式上任一点(x0,y0)的切线方程是________;
(2)设M,N是直线x=2上的两个点,若数学公式的最小值.

解:(1)(i)由焦点坐标可知c=1,长半轴长为,可知,a=,所以b=1,
所以椭圆C的方程为
(ii)过圆上任一点(x0,y0)的切线方程是
过椭圆上任一点(x0,y0)的切线方程是:
(2)∵M,N是直线x=2上的两个点,
∴设m(2,y1),N(2,y2),(不妨y1>y2).

∴(3,y1)•(1,y2)=0,
即3+y1y2=0,由于y1>y2.所以
y1>0,y2<0,
∴|MN|=y1-y2=y1+
当且仅当y1=,y2=-,时取等号.
故|MN|的最小值为:2
故答案为:(ii)
分析:(1)直接利用椭圆的焦点坐标与长半轴,求出b,然后求解椭圆的方程.
(2)(i)直接类比圆的切线方程,写出椭圆的切线方程即可.
(ii)设m(2,y1),N(2,y2),通过向量的数量积,推出y1,y2的关系,求出|MN|的表达式,利用基本不等式求出最小值即可.
点评:本题考查椭圆的标准方程的求法,向量的数量积,基本不等式的应用,考查计算能力,转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各曲线的标准方程.
(1)已知椭圆的两个焦点分别是(-2,0),(2,0),并且经过点(
5
2
,-
3
2
).
(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.

查看答案和解析>>

科目:高中数学 来源:2012年山东省高考模拟预测卷(四)文科数学试卷(解析版) 题型:解答题

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高三第一次模拟考试数学理卷 题型:解答题

((本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程

(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高三第一次模拟考试数学文卷 题型:解答题

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

同步练习册答案