精英家教网 > 高中数学 > 题目详情
2.已知f(x)=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象如图所示,则y=f(x)+cos(ωx+$\frac{7π}{12}$)的增区间是[kπ-$\frac{7}{24}$π,kπ+$\frac{5π}{24}$],k∈Z.

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求得函数的单调增区间.

解答 解:由题意,可得A=2,T=4($\frac{11π}{24}$-$\frac{5π}{24}$)=π,求得ω=2,
再根据五点法作图可得$\frac{5π}{24}$•2+φ=$\frac{π}{2}$,∴φ=$\frac{π}{12}$,
∴f(x)=2sin(2x+$\frac{π}{12}$).
y=f(x)+cos(ωx+$\frac{7π}{12}$)=2sin(2x+$\frac{π}{12}$)+cos(2x+$\frac{7π}{12}$)=sin(2x+$\frac{π}{12}$)
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{12}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{7}{24}$π≤x≤kπ+$\frac{5π}{24}$,
可得函数的增区间为[kπ-$\frac{7}{24}$π,kπ+$\frac{5π}{24}$],k∈Z,
故答案为[kπ-$\frac{7}{24}$π,kπ+$\frac{5π}{24}$],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知曲线C的方程为(x-3)2+(x-4)2=16,直线l1:kx-y-k=0和l2:x+2y+4=0,直线l1与曲线C交于不相同的两点P,Q.
(1)求k的范围;
(2)若l1与x轴的交点为A,设PQ中点M,l1与l2的交点为N,求证:|AN|•|AM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面积;
(2)设向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆与双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$有共同的焦点,且离心率为$\frac{{\sqrt{5}}}{5}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{20}+\frac{y^2}{25}=1$B.$\frac{x^2}{25}+\frac{y^2}{5}=1$C.$\frac{x^2}{25}+\frac{y^2}{20}=1$D.$\frac{x^2}{5}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,在其定义域内是增函数而且又是奇函数的是(  )
A.$y=x+\frac{1}{x}$B.y=2x-2-xC.y=log2|x|D.y=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{sinα-2cosα}{2sinα+3cosα}=2$,那么tanα的值为(  )
A.-2B.$-\frac{8}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点F(-2,0)在以原点为圆心的圆O内,且过F的最短的弦长为2.
(1)求圆O的方程;
(2)过F任作一条与两坐标标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“z1与z2互为共轭复数”是“z1z2∈R”的(  )条件.
A.充分不必要B.必要不充分
C.充要条件D.既不充分也不必要

查看答案和解析>>

同步练习册答案