精英家教网 > 高中数学 > 题目详情

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

【答案】(1)见解析部分;(2)s=42.6,s表示10位南方大学生身高的方差,是描述身高的离散程度的量.s值越小,表示身高越整齐,s值越大,表示身高越参差不齐.

【解析】

(1)根据题意画出茎叶图即可然后根据茎叶图写出统计结论.(2)由框图可得s表示样本数据的方差,然后根据题中数据求出s即可,然后说明它的统计学意义

(1)由题意画出茎叶图如图所示.

统计结论(给出下述四个结论供参考):

北方大学生的平均身高大于南方大学生的平均身高;

南方大学生的身高比北方大学生的身高更整齐;

南方大学生的身高的中位数为169.5 cm,北方大学生的身高的中位数是172 cm;

南方大学生的身高基本上是对称的,而且大多数集中在均值附近,北方大学生的身高分布较为分散.

(2)由程序框图可得s表示10位南方大学生身高的方差

由题意得10位南方大学生身高的平均数

故方差为

s是描述身高的离散程度的量,它的统计学意义是s的值越小,表示身高越整齐,s的值越大,表示身高越参差不齐.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<x<1,0<y<1, 求证 + + + ≥2 ,并求使等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形所在的平面垂直于平面.

(1)若的中点,求证:平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程 曲线C1的参数方程为 (α为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1 , C2的交点分别为A,B(A,B异于原点),当斜率k∈(1, ]时,求|OA||OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的一元二次方程有两个不相等的实数根;命题q:关于x的一元二次方程对于任意实数a都没有实数根.

若命题p为真命题,求实数m的取值范围;

若命题p和命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为函数的导函数, .

(1)求的单调区间;

(2)当时, 恒成立,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在点处的切线方程为,求的值;

(2)当时,在区间上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和记为Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn

查看答案和解析>>

同步练习册答案