精英家教网 > 高中数学 > 题目详情
已知抛物线,直线两点,是线段的中点,过轴的垂线交于点.(1)证明:抛物线在点处的切线与平行;(2)是否存在实数使NANB,若存在,求的值;若不存在,说明理由.
(Ⅰ) 略  (Ⅱ)   
法一:(Ⅰ)如图,设,把代入,由韦达定理得
点的坐标为
设抛物线在点处的切线的方程为
代入上式得直线与抛物线相切,
.即
(Ⅱ)假设存在实数,使,则,又的中点,
.由(Ⅰ)知
轴,

,解得.即存在,使
解法二:(Ⅰ)如图,设,把代入
.由韦达定理得
点的坐标为
抛物线在点处的切线的斜率为
(Ⅱ)假设存在实数,使
由(Ⅰ)知,则





,解得.即存在,使
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线中心在原点,坐标轴为对称轴,与圆x2+y2=17交于A(4,-1).若圆在点A的切线与双曲线的一条渐近线平行,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)离心率为的椭圆上有一点到椭圆两焦点的距离和为.以椭圆的右焦点为圆心,短轴长为直径的圆有切线为切点),且点满足为椭圆的上顶点)。(I)求椭圆的方程;(II)求点所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与双曲线的左支交于两点,另一直线过点的中点,求直线轴上的截距的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量为直角坐标平面内x轴,y轴正方向上的单位向量.若向量,且.(1)求满足上述条件的点的轨迹方程;(2)设,问是否存在常数,使得恒成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)平面直角坐标系中,为坐标原点,给定两点,点满足   ,其中,且.  (1)求点的轨迹方程;(2)设点的轨迹与双曲线交于两点,且以为直径的圆过原点,求证:为定值;(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
已知曲线C上的动点满足到点的距离比到直线的距离小1.
求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,动点M到直线x=-1的距离等于它到圆F:(x-2)2+y2=1的点的最小距离.
(1)求点M的轨迹方程;
(2)已知过点F的直线与点M的轨迹交于A,B两点,且|AF|=8,求|BF|的长.

查看答案和解析>>

同步练习册答案