【题目】如图所示,在四棱锥中,底面是边长为的正方形,是正三角形,为线段的中点,点为底面内的动点,则下列结论正确的是( )
A.若时,平面平面
B.若时,直线与平面所成的角的正弦值为
C.若直线和异面时,点不可能为底面的中心
D.若平面平面,且点为底面的中心时,
【答案】AC
【解析】
推导出平面,结合面面垂直的判定定理可判断A选项的正误;设的中点为,连接、,证明出平面,找出直线与平面所成的角,并计算出该角的正弦值,可判断B选项的正误;利用反证法可判断C选项的正误;计算出线段和的长度,可判断D选项的正误.综合可得出结论.
因为,,,所以平面,
平面,所以平面平面,A项正确;
设的中点为,连接、,则.
平面平面,平面平面,平面.
平面,设平面所成的角为,则,
,,,则,B项错误;
连接,易知平面,由、、确定的面即为平面,
当直线和异面时,若点为底面的中心,则,
又平面,则与共面,矛盾,C项正确;
连接,平面,平面,,
、分别为、的中点,则,
又,故,,则,D项错误.
故选:AC.
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,是轴正半轴上两点(在的左侧),且,过,作轴的垂线,与抛物线在第一象限分别交于,两点.
(Ⅰ)若,点与抛物线的焦点重合,求直线的斜率;
(Ⅱ)若为坐标原点,记的面积为,梯形的面积为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的左右焦点.
(Ⅰ)若是第一象限内该椭圆上的一点, ,求点的坐标.
(Ⅱ)若直线与圆相切,交椭圆于两点,是否存在这样的直线,使得?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数浓度,制定了空气质量标准:
空气污染质量 | ||||||
空气质量等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).
(1)某人计划11月份开车出行,求因空气污染被限号出行的概率;
(2)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行三年来的11月份共90天的空气质量进行统计,其结果如表:
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 16 | 39 | 18 | 10 | 5 | 2 |
根据限行前六年180天与限行后90天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.
空气质量优良 | 空气质量污染 | 合计 | |
限行前 | |||
限行后 | |||
合计 |
参考数据:
其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,,.
(1)证明:平面;
(2)在线段上是否存在点,使得平面与平面所成的锐二面角为,若存在,求出线段的长度;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆C:的离心率为,且点在椭圆C上.椭圆C的左顶点为A.
(1)求椭圆C的方程
(2)椭圆的右焦点且斜率为的直线与椭圆交于P,Q两点,求三角形APQ的面积;
(3)过点A作直线与椭圆C交于另一点B.若直线交轴于点C,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,分别为椭圆的左,右焦点,直线过点与椭圆交于两点,当直线的斜率为时,线段的长为.
(1)求椭圆的方程;
(2)过点且与直线垂直的直线与椭圆交于两点,求四边形面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com