精英家教网 > 高中数学 > 题目详情
已知函数f(x)=+3-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.
(Ⅰ);(II)的取值范围是.

试题分析:(Ⅰ)由题可知,函数的导函数在处函数值为零,故可求得的值,故而得到函数的解析式,然后利用导数求出(1,f(1))的斜率,利用点斜式写出切线方程;(II)由(Ⅰ)已知了函数解析式,将给出的不等式分离参数,构造函数求出参数的范围.
试题解析:(Ⅰ), ∵处取得极值,
,       2分
  4分
曲线在点处的切线方程为:
.       5分
(II)由,得
,∵,∴,      7分
, 则.     8分
,则
,∴,∴上单调递增,      10分
,因此,故上单调递增,
,∴
的取值范围是.     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若1是函数的一个零点,求函数的解析表达式;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的解集是,求的值;
(2)若,解关于的不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数n,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数 在区间[-2,2]上的“中值点”为____

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线在点的切线方程是____________              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线在点处的切线与两条坐标轴围成的三角形的面积为54,则(   )
A.3B.6 C.9D.18

查看答案和解析>>

同步练习册答案