分析 要求函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,可得ω•$\frac{π}{12}$+$\frac{π}{4}$<$\frac{π}{2}$<ω•$\frac{π}{3}$+$\frac{π}{4}$≤$\frac{3π}{2}$,解之即可得结论.
解答 解:要求函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,
∴ω•$\frac{π}{12}$+$\frac{π}{4}$<$\frac{π}{2}$<ω•$\frac{π}{3}$+$\frac{π}{4}$<$\frac{3π}{2}$
解之即可得:ω∈($\frac{3}{4}$,3).
故答案为($\frac{3}{4}$,3).
点评 本题主要考查研究有关三角的函数时要利用整体思想,灵活应用三角函数的图象和性质解题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2$\sqrt{2}$,2$\sqrt{2}$) | B. | [-2,2$\sqrt{2}$) | C. | (-2$\sqrt{2}$,-2] | D. | [2,2$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com