已知椭圆:,离心率为,焦点过的直线交椭圆于两点,且的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ) 直线与y轴交于点P(0,m)(m0),与椭圆C交于相异两点A,B且.若,求m的取值范围。
(Ⅰ) ;(Ⅱ)
解析试题分析:(1)设C:(A>b>0),由条件知A-C=,由此能导出C的方程.(Ⅱ)由题意可知λ=3或O点与P点重合.当O点与P点重合时,m=0.当λ=3时,直线l与y轴相交,设l与椭圆C交点为A(x1,y1),B(x2,y2),得再由根的判别式和韦达定理进行求解.
试题解析:(1)设C:(A>b>0),设C>0,,由条件知A-C=,,∴A=1,b=C=,故C的方程为:;
(Ⅱ)设与椭圆C的交点为A(,),B(,)。将y=kx+m代入
得,所以①,
.因为,所以,
消去得,所以,
即,当时,
所以,由①得,解得
考点:1、直线与圆锥曲线的综合问题;2、向量在几何中的应用.
科目:高中数学 来源: 题型:解答题
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、.
(1)求圆和圆的方程;
(2)过点作的平行线,求直线被圆截得的弦的长度;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线 于、两点,线段的中点为.记直线的斜率为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线与的另一交点为,且的面积为,求椭圆的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆:上一点,分别为的左右焦点,,的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com