精英家教网 > 高中数学 > 题目详情
4.比较下列各组两个式子的大小:
(1)(x-2)2和1-4x;
(2)(x-1)(x+5)和(x+1)2

分析 运用作差法得出差值关系,然后讨论差值的正负情况得出x的范围.

解答 解:(1)(x-2)2-1+4x=x2-4x+4-1+4x=x2+3>0;
所以(x-2)2>1-4x;
(2)(x-1)(x+5)-(x+1)2
=x2+4x-5-x2-2x-1
=2x-6,
①当2x-6<0,即x<3时,
(x-1)(x+5)<(x+1)2
②当2x-6=0,即a=3时,
(x-1)(x+5)=(x+1)2
③当2x-6>0,即x>3时,
(x-1)(x+5)>(x+1)2

点评 本题考查整式的加减,关键是利用作差法解答,另外要注意在得出差值后的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)在定义域x∈R上,是以5为周期的奇函数,且f(-2)=1,则f(12)等于(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,复数z满足zi=$\frac{3-i}{1+i}$,则复数z的模|z|=(  )
A.$\sqrt{3}$B.4C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知0<β<α<$\frac{π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}sin\frac{x}{4}cos\frac{x}{4}+{cos}^{2}\frac{x}{4}$.
(Ⅰ)若f(a)=$\frac{3}{2}$,求tan(a+$\frac{π}{3}$)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,若f(A)=$\frac{1+\sqrt{3}}{2}$,试证明:a2+b2+c2=ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).根据数列的首项和递推公式,写出它的前五项并归纳出通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x(ex-e-x)-(2x+1)(e2x+1-e-2x-1),则满足f(x)>0的实数x的取值范围为-1<x<-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点C为线段AB上一点,P为直线AB外一点,PC是∠APB角的平分线,I为PC上一点,满足$\overrightarrow{BI}$=$\overrightarrow{BA}$+λ($\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$+$\frac{\overrightarrow{AP}}{|\overrightarrow{AP}|}$)(λ>0),$|\overrightarrow{PA}|-|\overrightarrow{PB}|=4$,$|\overrightarrow{PA}-\overrightarrow{PB}|=10$,则$\frac{{\overrightarrow{BI}•\overrightarrow{BA}}}{{|\overrightarrow{BA}|}}$的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案