精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面ABCD是等边三角形,四边形ABCD是矩形,F为棱PA上一点,且MAD的中点,四棱锥的体积为

1)若NPB的中点,求证:平面平面PCD

2)在(Ⅰ)的条件,求三棱锥的体积.

【答案】(1)见解析;

(2).

【解析】

1)由AP的中点,证得,又由四边形是矩形,证得,从而证得,再由,证得,最后利用面面平行的判定定理,即可得到平面平面

2)连接,根据面面垂直的性质,证得,又由的中点,得到到面的距离等于到面的距离的一半,利用体积公式,即可求解.

1)因为,所以的中点,又因为NPB的中点,所以

由四边形是矩形,得,故

,所以

又由,且,所以

又因为

根据面面平行的判定定理,可得平面平面

2)连接,由是等边三角形,得

又因为面,面

所以

因为的中点,所以到面的距离等于到面的距离的一半,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中.

1)求这300名玩家测评分数的平均数;

2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为,且每款游戏之间改进与否相互独立.

i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;

ii)每款游戏聘请专家测试的费用均为300/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是=.若水晶产品的销售价格不变,次投入后的年利润为万元.①求出的表达式;问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆上任意一点到其两个焦点的距离之和等于,焦距为2c,圆是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形面积的最大值为

(1)求椭圆C的方程;

(2)如图,若直线与圆O相切,且与椭圆相交于MN两点,直线平行且与椭圆相切于POP两点位于的同侧),求直线距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)设,曲线在点处的切线在轴上的截距为,求的最小值;

(Ⅱ)若只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点到点的距离比它到直线距离小

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点作互相垂直的两条直线,它们与(Ⅰ)中轨迹分别交于点及点,且分别是线段的中点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(注:次品率=次品数/生产量)

1)试将生产这种仪器元件每天的盈利额(万元)表示为日产量(万件)的函数;

2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点E在椭圆上,以E为圆心的圆与x轴相切于椭圆C的右焦点,与y轴相交于AB两点,且是边长为2的正三角形.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知圆,设圆O上任意一点P处的切线交椭圆CMN两点,试判断以为直径的圆是否过定点?若过定点,求出该定点坐标,并直接写出的值;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案