精英家教网 > 高中数学 > 题目详情

已知抛物线C:y2=mx(m≠0)的准线与直线l:kx-y+2k=0(k≠0)的交点M在x轴上,l与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).
(1)求抛物线C的方程;
(2)求实数p的取值范围;
(3)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.

解(1)因为点M在x轴上,令y=0代入l:kx-y+2k=0(k≠0),解得x=-2,
所以M(-2,0),所以抛物线C:y2=mx(m≠0)的准线为x=-2=-,所以m=8
所以抛物线C的方程为y2=8x.
(2)由-8y+16k=0(k≠0)△=64(1-k2)>0∴0<k2<1

∴AB的中垂线方程为y-得p=x=4++2∵
0<k2<1∴p∈(6,+∞)
(3)∵抛物线焦点F(2,0),准线x=-2
∴x=-2是Q的左准线
设Q的中心为O′(x,0),则短轴端点为(x,±y)
(i)若F为左焦点,则c=x-2>0,b=|y|
∴a2=b2+c2=(x-2)2+y2
依左准线方程有x-=-2∴x-=-2即y2=4(x-2)(x>2)
(ii)若F为右焦点,则0<x<2,故c=2-x,b=|y|
∴a2=b2+c2=(2-x)2+y2依左准线方程有x-=-2
即∴x-=-2化简得2x2-4x+y2=0
即2(x-1)2+y2=2(0<x<2,y≠0)
分析:(1)先求出M点坐标,然后根据准线x=-2=-,求出m的值,进而求得抛物线方程;
(2)联立抛物线和直线方程,由△>0,求k2的范围,进而求出AB的中垂线方程,令y=0,求得关于p的关系式,从而求出范围.
(3)首先求出焦点和准线方程,分两种情况(i)若F为左焦点,则c=x-2>0,然后根据准线方程和a2=b2+c2,求出结果.
(ii)若F为右焦点,则0<x<2,故c=2-x,b=|y|,然后根据准线方程和a2=b2+c2,求出结果.
点评:本题考查了抛物线标准方程和直线和圆锥曲线的综合,综合性强,(3)要注意分两种情况,进行作答,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案