如图,是边长为的正方形,平面,,,与平面所成角为.
(1)求证:平面;
(2)求二面角的余弦值;
(3)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
(1) 参考解析;(2) ; (3)
解析试题分析:(1)因为要证平面即直线与平面垂直的证明,通过证明这条直线垂直平面内的两条相交直线即可,依题意易得到.
(2)因为要求二面角的余弦值,一般是通过建立空间坐标系,写出相应的点的坐标,由于AC所在的向量就是平面EDB的法向量,所以关键是通过待定系数法求出平面EFB的法向量.再通过两法向量的夹角得到两平面的二面角的大小,二面角是钝角还是锐角通过图形来确定.
(3)因为点是线段上一个动点,试确定点的位置,使得平面.通过对点M的假设写出向量AM.从而由该向量垂直平面的法向量,即可得到相应的点M的坐标.
试题解析:(1)证明: 因为平面, 所以.
因为是正方形,所以,又相交
从而平面.
(2)解:因为两两垂直,所以建立空间直角坐标系如图所示.因为与平面所成角为, 即,
所以.由可知,.
则,,,,,
所以,,
设平面的法向量为,则,即,
令,则. 因为平面,所以为平面的法向量,,
所以.
因为二面角为锐角,所以二面角的余弦值为.
(3)解:点是线段上一个动点,设. 则,
因为平面,所以,
即,解得.
此时,点坐标为,,符合题意.
考点:1.线面垂直的证明.2.二面角的问题.3.直线与平面平行.4.空间想象能力.
科目:高中数学 来源: 题型:解答题
)如图所示,在三棱锥P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=.
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且=λ.
(1)求证:EF∥平面PAD.
(2)当λ=时,求异面直线BF与CD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又,且
(1)求证:;
(2)若,求直线与所成角的余弦值;
(3)若平面与平面所成的角为,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B-AF-D的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com