精英家教网 > 高中数学 > 题目详情

如图,是边长为的正方形,平面与平面所成角为.

(1)求证:平面
(2)求二面角的余弦值;
(3)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

(1) 参考解析;(2) ; (3)

解析试题分析:(1)因为要证平面即直线与平面垂直的证明,通过证明这条直线垂直平面内的两条相交直线即可,依题意易得到.
(2)因为要求二面角的余弦值,一般是通过建立空间坐标系,写出相应的点的坐标,由于AC所在的向量就是平面EDB的法向量,所以关键是通过待定系数法求出平面EFB的法向量.再通过两法向量的夹角得到两平面的二面角的大小,二面角是钝角还是锐角通过图形来确定.
(3)因为点是线段上一个动点,试确定点的位置,使得平面.通过对点M的假设写出向量AM.从而由该向量垂直平面的法向量,即可得到相应的点M的坐标.
试题解析:(1)证明: 因为平面,   所以.
因为是正方形,所以,又相交
从而平面.  
(2)解:因为两两垂直,所以建立空间直角坐标系如图所示.因为与平面所成角为, 即
所以.由可知.

所以
设平面的法向量为,则,即
,则. 因为平面,所以为平面的法向量,
所以.
因为二面角为锐角,所以二面角的余弦值为
(3)解:点是线段上一个动点,设. 则
因为平面,所以,
,解得.
此时,点坐标为,符合题意. 
考点:1.线面垂直的证明.2.二面角的问题.3.直线与平面平行.4.空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.

(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交点,EPB上任意一点.

(1)证明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PDAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是正方形,底面上的任意一点.

(1)求证:平面平面
(2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且

(1)求证:面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又

(1)求证:
(2)若,求直线所成角的余弦值;
(3)若平面与平面所成的角为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.

(1)求PA的长;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

同步练习册答案