精英家教网 > 高中数学 > 题目详情
12.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范围.

分析 (Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1-x2|=$\frac{2{b}^{2}}{a}$,由题意得,△MNF2的面积为$\frac{1}{2}×$|MN|×|F1F2|=c|MN|=$\frac{2{b}^{2}c}{a}=\sqrt{3}$,又∵$\frac{c}{a}=\frac{\sqrt{3}}{2}$,解得a、b即可.
(Ⅱ)设A(x1,y1),B(x2,y2),P(0,y0),分类讨论:当m=0时,利用椭圆的对称性即可得出;m≠0时,直线AB的方程与椭圆的方程联立得到△>0及根与系数的关系,再利用向量相等,代入计算即可得出.

解答 解:(Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1-x2|=$\frac{2{b}^{2}}{a}$,
由题意得,△MNF2的面积为$\frac{1}{2}×$|MN|×|F1F2|=c|MN|=$\frac{2{b}^{2}c}{a}=\sqrt{3}$,
又∵$\frac{c}{a}=\frac{\sqrt{3}}{2}$,解得b2=1,a2=4,
椭圆C的标准方程为:x2+$\frac{{y}^{2}}{4}=1$.
(Ⅱ)当m=0时,则P(0,0),由椭圆的对称性得$\overrightarrow{AP}=\overrightarrow{PB},即\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}$,
∴m=0时,存在实数λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,
当m≠0时,由$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,得$\overrightarrow{OP}=\frac{1}{4}\overrightarrow{OA}+\frac{λ}{4}\overrightarrow{OB}$,
∵A、B、p三点共线,∴1+λ=4,⇒λ=3⇒$\overrightarrow{AP}=3\overrightarrow{PB}$
设A(x1,y1),B(x2,y2
由$\left\{\begin{array}{l}{y=kx+m}\\{4{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,得(k2+4)x2+2mkx+m2-4=0,
由已知得△=4m2k2-4(k2+4)(m2-4)>0,即k2-m2+4>0
且x1+x2=$\frac{-2km}{{k}^{2}+4}$,x1x2=$\frac{{m}^{2}-4}{{k}^{2}+4}$.
由$\overrightarrow{AP}=3\overrightarrow{PB}$得x1=-3x2
3(x1+x22+4x1x2=0,∴$\frac{12{k}^{2}{m}^{2}}{({k}^{2}+4)^{2}}+\frac{4({m}^{2}-4)}{{k}^{2}+4}=0$,⇒m2k2+m2-k2-4=0
显然m2=1不成立,∴${k}^{2}=\frac{4-{m}^{2}}{{m}^{2}-1}$
∵k2-m2+4>0,∴$\frac{4-{m}^{2}}{{m}^{2}-1}-{m}^{2}+4>0$,即$\frac{(4-{m}^{2}){m}^{2}}{{m}^{2}-1}>0$.
解得-2<m<-1或1<m<2.
综上所述,m的取值范围为(-2,-1)∪(1,2)∪{0}

点评 本题考查椭圆的标准方程的求法,考查了椭圆的简单性质、涉及直线与椭圆相交问题,常转化为关于x的一元二次方程,利用△>0及根与系数的关系、向量相等等基础知识与基本技能方法求解,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.太原市某时段100辆汽车通过祥云桥时,时速的频率分布直方图如图所示,则时速在[30,40]的汽车约有(  )
A.30辆B.35辆C.40辆D.50辆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的三边长a,b,c和面积S满足S=$\frac{1}{2}$[c2-(a-b)2],若c=2,且2sinAcosC=sinB,则b的值为(  )
A.$\frac{15}{4}$B.$\frac{13}{4}$C.$\frac{12}{5}$D.$\frac{13}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知方程(m-3)x2+(5-m)y2=(m-3)(5-m),其中m∈R,对m的不同取值,该方程不可能表示的曲线是(  )
A.直线B.C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow{b}$=($\sqrt{3}$,-1),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的周期及单调减区间.
(2)已知x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等腰三角形底角的余弦值为$\frac{1}{3}$,则顶角的余弦值是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow{b}$=(-3,0,4),且k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则k=$\frac{31}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题P:“?x>0,ex>x+1”,则¬P为(  )
A.?x≤0,ex≤x+1B.?x≤0,ex>x+1C.?x>0,ex≤x+1D.?x>0,ex≤x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函数y=f(x)的极小值为4,且在点x=$\frac{1}{3}$处取到极大值,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案