精英家教网 > 高中数学 > 题目详情
已知AB与CD为异面线段,CD?平面α,ABα,M、N分别是线段AC与BD的中点,求证:MN平面α.
证明:如图:根据已知AB与CD为异面线段,可得A、B、C、D不共面.
连结AD,并取AD中点E,可得M、N、E不共线,故M、N、E确定一个平面.
∵N是BD的中点,∴NEAB.
又ABα,∴NEα.
∵M是AC的中点,∴MECD,再由CD?平面α,ME不在平面α内,可得MEα,
∵ME∩NE=E,∴平面MEN平面α,∴MN平面α.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若Q是PA的中点,求证:PC平面BDQ;
(Ⅱ)若PB=PD,求证:BD⊥CQ;
(Ⅲ)在(Ⅱ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F分别是AD、PC的中点.
(1)求证:EF面PAB;
(2)求EF与面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,与平面AA1D1D平行的平面是______;与平面A1B1C1D1平行的平面是______,与平面BDD1B1平行的棱有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中,AB=A1B1,AC1⊥平面A1BD,D为AC的中点.(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求证:B1C1⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN平面BCE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案