【题目】已知,是函数的两个零点,其中常数,,设.
(Ⅰ)用,表示,;
(Ⅱ)求证:;
(Ⅲ)求证:对任意的.
【答案】(Ⅰ)(Ⅱ)详见解析,(Ⅲ)详见解析.
【解析】
试题(Ⅰ)由题意得:,.因为,所以..对抽象的求和符号具体化处理,是解答本题的关键.(Ⅱ)而
,(Ⅲ)用数学归纳法证明有关自然数的命题. (1)当时,由(Ⅰ)问知是整数,结论成立.(2)假设当()时结论成立,即都是整数,由(Ⅱ)问知.即时,结论也成立.
解:(Ⅰ)由,.
因为,所以.
. 3分
(Ⅱ)由,得
.
即,同理,.
所以.
所以. 8分
(Ⅲ)用数学归纳法证明.
(1)当时,由(Ⅰ)问知是整数,结论成立.
(2)假设当()时结论成立,即都是整数.
由,得.
即.
所以,.
所以.
即.
由都是整数,且,,所以也是整数.
即时,结论也成立.
由(1)(2)可知,对于一切,的值都是整数. 13分
科目:高中数学 来源: 题型:
【题目】春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化年除夕18时和初一2时,国家环保部门对8个城市空气中浓度监测的数据如表单位:微克立方米.
除夕18时浓度 | 初一2时浓度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家庄 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
Ⅰ求这8个城市除夕18时空气中浓度的平均值;
Ⅱ环保部门发现:除夕18时到初一2时空气中浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
Ⅲ记2017年除夕18时和初一2时以上8个城市空气中浓度的方差分别为和,比较和的大小关系只需写出结果.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | ||
男生 | 20 | 5 | |
女生 | 10 | 20 | |
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
临界值参考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线焦点为,为抛物线上在第一象限内一点,为原点,面积为.
(1)求抛物线方程;
(2)过点作两条直线分别交抛物线于异于点的两点,,且两直线斜率之和为,
(i)若为常数,求证直线过定点;
(ii)当改变时,求(i)中距离最近的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,底面ABCD为直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.
(1)求证:AB平面SAD;
(2)求平面SCD与平面SAB所成的锐二面角的余弦值;
(3)点E,F分别为线段BC,SB上的一点,若平面AEF//平面SCD,求三棱锥B-AEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.
(Ⅰ)求甲、乙、丙三名同学都选高校的概率;
(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2所.
(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;
(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知圆与直线相切,点A为圆上一动点,轴于点N,且动点满足,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设P,Q是曲线C上两动点,线段的中点为T,,的斜率分别为,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为直角梯形,BC∥AD,∠BAD=90°,BC=2,AD=3,四边形ABEF为平行四边形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.
(1)求证:AE⊥平面ABCD;
(2)求平面ABEF与平面FCD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com