精英家教网 > 高中数学 > 题目详情

【题目】已知是函数的两个零点,其中常数,设

)用表示

)求证:

)求证:对任意的

【答案】)详见解析,()详见解析.

【解析】

试题()由题意得:.因为,所以.对抽象的求和符号具体化处理,是解答本题的关键.

,()用数学归纳法证明有关自然数的命题. 1)当时,由()问知是整数,结论成立.(2)假设当)时结论成立,即都是整数,由()问知.即时,结论也成立.

解:()由

因为,所以

3

)由,得

,同理,

所以

所以8

)用数学归纳法证明.

1)当时,由()问知是整数,结论成立.

2)假设当)时结论成立,即都是整数.

,得

所以

所以

都是整数,且,所以也是整数.

时,结论也成立.

由(1)(2)可知,对于一切的值都是整数. 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化年除夕18时和初一2时,国家环保部门对8个城市空气中浓度监测的数据如表单位:微克立方米

除夕18浓度

初一2浓度

北京

75

647

天津

66

400

石家庄

89

375

廊坊

102

399

太原

46

115

上海

16

17

南京

35

44

杭州

131

39

求这8个城市除夕18时空气中浓度的平均值;

环保部门发现:除夕18时到初一2时空气中浓度上升不超过100的城市都是禁止燃放烟花爆竹的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹从以上8个城市中随机选取3个城市组织专家进行调研,记选到禁止燃放烟花爆竹的城市个数为X,求随机变量y的分布列和数学期望;

2017年除夕18时和初一2时以上8个城市空气中浓度的方差分别为,比较的大小关系只需写出结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查学生喜欢应用统计课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:

喜欢统计课程

不喜欢统计课程

男生

20

5

女生

10

20

1判断是否有995%的把握认为喜欢应用统计课程与性别有关?

2用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率

临界值参考:

010

005

025

0010

0005

0001

2706

3841

5024

6635

7879

10828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为为抛物线上在第一象限内一点,为原点,面积为.

1)求抛物线方程;

2)过点作两条直线分别交抛物线于异于点的两点,且两直线斜率之和为

i)若为常数,求证直线过定点

ii)当改变时,求(i)中距离最近的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S-ABCD中,底面ABCD为直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.

(1)求证:AB平面SAD

(2)求平面SCD与平面SAB所成的锐二面角的余弦值;

(3)点E,F分别为线段BC,SB上的一点,若平面AEF//平面SCD,求三棱锥B-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2.

(Ⅰ)求甲、乙、丙三名同学都选高校的概率;

(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2.

(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;

(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆与直线相切,点A为圆上一动点,轴于点N,且动点满足,设动点M的轨迹为曲线C.

1)求曲线C的方程;

2)设PQ是曲线C上两动点,线段的中点为T的斜率分别为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为直角梯形,BCAD,∠BAD=90°,BC=2,AD=3,四边形ABEF为平行四边形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.

(1)求证:AE⊥平面ABCD;

(2)求平面ABEF与平面FCD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案