已知等差数列的首项,公差,且、、分别是等比数列的、、.
(1)求数列和的通项公式;
(2)设数列对任意正整数均有成立,求的值.
科目:高中数学 来源: 题型:解答题
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(1) 若当n=10时,Sn取到最小值,求的取值范围;
(2) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在与之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设等差数列{ }的前n项和为Sn,且S4=4S2,.
(1)求数列{}的通项公式;
(2)设数列{ }满足,求{}的前n项和Tn;
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是公差不等于0的等差数列,是等比数列,且.
(1)若,比较与的大小关系;
(2)若.(ⅰ)判断是否为数列中的某一项,并请说明理由;
(ⅱ)若是数列中的某一项,写出正整数的集合(不必说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知为公差不为零的等差数列,首项,的部分项、、 、恰为等比数列,且,,.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:(是正整数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com