精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
12
x2+ax+2blnx
(1)若b=1时,函数f(x)在(0,1)上不单调,求实数a的取值范围;
(2)若函数在(0,m)和(n,+∞)上为增函数,在(m,n)上为减函数(其中0<m<1,1<n<2).求b-a的取值范围.
分析:(1)先求导函数,由于函数f(x)在(0,1)上不单调的情况不好讨论,要使函数f(x)在区间上是单调函数,则导数≤0或≥0恒成立,列出不等式求出解集即可到得到a的取值范围;
(2)由函数的单调区间,得到导函数为0的解为m,n,再依据0<m<1,1<n<2,得到有关a,b的不等式,得到可行域,由线性规划问题,得到b-a的取值范围.
解答:解:(1)由已知f′(x)=x+a+
2
x
,若函数f(x)在(0,1)上单调,
x+a+
2
x
≥0
恒成立,或x+a+
2
x
≤0
恒成立,
x+a+
2
x
≥0
(0<x<1)恒成立等价于x+
2
x
≥-a

μ(x)=x+
2
x
,则μ(x)在(0,1)上为减函数,所以μ(x)>μ(1)=3,则3≥-a,即a≥-3.
x+a+
2
x
≤0
(0<x<1)恒成立等价于x+
2
x
≤-a

μ(x)=x+
2
x
,则μ(x)在(0,1)上为减函数,所以μ(x)>μ(1)=3,
所以x+a+
2
x
≤0
(0<x<1)不恒成立.
综上所述a≥-3.
(2)因为f′(x)=x+a+
2b
x
=
x2+ax+2b
x

由已知:g(x)=x2+ax+2b=0的两根为m,n.
g′(0)>0 
g′(1)<0 
 g′(2)>0
,即
b>0 
1+a+2b<0 
4+2a+2b>0


令μ=b-a,则b=a+μ,即μ为过点(a,b)且斜率为1的直线在b轴上的截距,
1+a+2b=0
a+b+2=0
a=-3
b=1
,即C(-3,1)
由可行域得:直线过点(-1,0),(-3,1)时,μ分别取最小值1,最大值4.
所以1<b-a<4.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.掌握不等式恒成立时所取的条件.同时考查了简单线性规划的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案