精英家教网 > 高中数学 > 题目详情
若点P(x,y)在圆C:(x-2)2+y2=3上,则
y
x
的最大值是
 
考点:直线与圆的位置关系
专题:直线与圆
分析:设k=
y
x
,即y=kx,根据直线和圆相切即可得到结论.
解答: 解:设k=
y
x
,即y=kx,
则∵点P(x,y)在圆C:(x-2)2+y2=3上,
∴圆心(2,0)到直线kx-y=0的距离d
3

|2k|
1+k2
3

平方得4k2≤3+3k2
即k2≤3,
解得-
3
≤k≤
3

y
x
的最大值是
3

故答案为:
3
点评:本题主要考查直线和圆的位置关系的应用,根据点到直线的距离公式和半径之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x0是方程10-x=lnx的解,且x0∈(k,k+1)(k∈Z,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;  
(2)设函数f(x)=sinωx-
3
cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx的一个单调递调增区间是(  )
A、(-
π
6
6
B、(-
6
π
6
C、[-
π
2
π
2
]
D、(-
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,数列{bn}中,b1=1,b2=
1
2
2
bn+1
=
1
bn
+
1
bn+2
(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)数列{cn}满足cn=
an
bn
,求证:c1+c2+c3+…+cn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:
x+y-8≤0
x-y+4≥0
y≥0
,若圆心C∈Ω,且圆C与y轴相切,则a2+b2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

云南省2014年全省高中男生身高统计调查数据显示:全省100000名男生的平均身高为170.5cm.现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第6组[182.5,187.5],
图是按上述分组方法得到的频率分布直方图.
(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)已知我校这50名男生中身高排名(从高到低)在全省前100名有2人,现从身高在182.5cm以上(含182.5cm)的人中任意抽取2人,求该2人中至少有1人身高排名(从高到低)在全省前100名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某线性规划问题的约束条件是
y≤x
3y≥x
x+y≤4
,则下列目标函数中,在点(3,1)处取得最小值得是(  )
A、z=2x-y
B、z=2x+y
C、z=-
1
2
x-y
D、z=-2x+y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(2,-1)、B(3,2)、C(-3,-1),AD为BC边上的高,则点D的坐标为
 

查看答案和解析>>

同步练习册答案