精英家教网 > 高中数学 > 题目详情

设O为坐标原点,点P的坐标(x-2,x-y)
(I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

解:(I)记抽到的卡片标号为(x,y),所有的情况分别为,
(x,y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)
P(x-2,x-y)(-1,0)(-1,-1)(-1,-2)(0,1)(0,0)(0,-1)(1,2)(1,1)(1,0)
|OP|11011
共9种.由表格可知|OP|的最大值为…(5分)
设事件A为“|OP|取到最大值”,则满足事件A的(x,y)有(1,3),(3,1)两种情况,
…(7分)
(II)设事件B为“P点在第一象限”
,则其所表示的区域面积为3×3=9
由题意可得事件B满足
即如图所示的阴影部分,
其区域面积为
…(12分)
分析:(1)记先后抽到的两张卡片的标号为(x,y),列出所有情形,然后分别求出|OP|的值,从而得到最大值;
(2)求出点P落在第一象限所构成区域的面积,然后求出基本事件空间所表示的区域的面积,计算出二者的比值即可.
点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O为坐标原点,点P的坐标为(x-2,x-y).
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现随机从此盒中先后连续抽出两张卡片,记两次抽取卡片的标号分别为x、y,求点P在第一象限的概率;
(2)若利用计算机随机在区间[0,3]上先后取两个数分别记为x、y,求点P在第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•滨州一模)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,设O为坐标原点,点P的坐标为(x-2,x-y),记ξ=|
OP
|
2

(I)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(Ⅱ)求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为(x-2,x-y),记ξ=|
OP
|2

(I)求事件“ξ取值为5”的概率;
(II)求ξ所有可能取值及各取值对应的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博一模)在一个盒子中,放有大小相同的红、白、黄三个小球,从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸得两球,所得分数分别记为x、y,设o为坐标原点,点p的坐标为(x-2),x-y),记ξ=|
OP
|2
(Ⅰ)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(Ⅱ)求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•楚雄州模拟)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为(x-2,x-y).
(1)求|OP|的最大值;
(2)求|OP|取得最大值时的概率.

查看答案和解析>>

同步练习册答案