精英家教网 > 高中数学 > 题目详情

【题目】记max{x,y}= ,min{x,y}= ,设 为平面向量,则(
A.min{| + |,| |}≤min{| |,| |}
B.min{| + |,| |}≥min{| |,| |}
C.max{| + |2 , | |2}≤| |2+| |2
D.max{| + |2 , | |2}≥| |2+| |2

【答案】D
【解析】解:对于选项A,取 ,则由图形可知,根据勾股定理,结论不成立;
对于选项B,取 是非零的相等向量,则不等式左边min{| + |,| |}=0,显然,不等式不成立;
对于选项C,取 是非零的相等向量,则不等式左边max{| + |2 , | |2}=| + |2=4 ,而不等式右边=| |2+| |2=2 ,故C不成立,D选项正确.
故选:D.
平移到同一起点,根据向量加减法的几何意义可知, + 分别表示以 为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= , g(x)=ex+m , 其中e=2.718….
(1)求f(x)在x=1处的切线方程;
(2)当m≥﹣2时,证明:f(x)<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示四棱锥中,底面,四边形中,

求四棱锥的体积;

求证:平面

在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的部分图象如图所示.

)求函数的解析式;

)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )

A. B. 2 C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手车交易市场对某型号的二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(1)试求关于的回归直线方程:(参考公式:, .)

(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )

A. 36 B. 45 C. 99 D. 100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.

(1)证明:P是线段BC的中点;
(2)求二面角A﹣NP﹣M的余弦值.

查看答案和解析>>

同步练习册答案