精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,给出以下结论:
①f(x)的解析式为f(x)=x3-4x,x∈[-2,2];
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于0.
其中正确的结论有(  )
分析:首先利用导数的几何意义及函数f(x)过原点,列方程组求出f(x)的解析式;则命题①可得出判断;最后令f′(x)=0,求出f(x)的极值点,进而求得f(x)的单调区间与最值,则命题②③得出判断.
解答:解:函数f(x)=x3+ax2+bx+c的图象过原点,可得c=0;
又f′(x)=3x2+2ax+b,且f(x)在x=±1处的切线斜率均为-1,
则有
3+2a+b=-1
3-2a+b=-1
,解得a=0,b=-4.
所以f(x)=x3-4x,f′(x)=3x2-4.
①可见f(x)=x3-4x,因此①正确;
②令f′(x)=0,得x=±
2
3
3
.因此②不正确;
所以f(x)在[-
2
3
3
2
3
3
]内递减,
且f(x)的极大值为f(-
2
3
3
)=
16
3
9
,极小值为f(
2
3
3
)=-
16
3
9
,两端点处f(-2)=f(2)=0,
所以f(x)的最大值为M=
16
3
9
,最小值为m=-
16
3
9
,则M+m=0,因此③正确.
所以正确的结论为①③,
故选C.
点评:本题考查了利用导数研究曲线上某点切线方程,应用导数求函数的极值点,最大值与最小值等基础知识,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案