精英家教网 > 高中数学 > 题目详情
8.一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

分析 一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,分别求出体积,相加可得答案.

解答 解:由已知可得该几何体是一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,
三棱柱的底面如主视图所示:故底面面积为$\frac{1}{2}$×2×1=1,
棱柱的高为1,
故棱柱的体积为:1;
半圆锥的底面如俯视图中半圆所示,故底面面积为:$\frac{1}{2}π$,
半圆锥的高为:1,
故半圆锥的体积为:$\frac{1}{3}•\frac{1}{2}π•1$=$\frac{π}{6}$,
故组合体的体积V=1+$\frac{π}{6}$,
故选:D

点评 本题考查的知识点是棱柱的体积和表面积,圆锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(2,2).
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值;
(Ⅱ)λ为何值时,$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,复数$\frac{3i}{1-i}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,以A,B,C,D,E为顶点的六面体中,△ABC和△ABD均为正三角形,且平面ABC⊥平面ABD,EC⊥面ABC,EC=$\frac{{\sqrt{3}}}{2}$,AB=2.
(1)求证:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若变量x,y满足$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+1≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则α的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).
(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
文科生理科生合计
获奖5
不获奖
合计200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\sqrt{x}$lg(3-x)的定义域为(  )
A.(0,3)B.[0,3)C.(0,3]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以(1,-1)为中点的抛物线y2=8x的弦所在直线的方程存在吗?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案