精英家教网 > 高中数学 > 题目详情

【题目】己知{an}是等差数列,其前n项和Snn22n+b1{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为(  )

A.37B.-27C.77D.46

【答案】C

【解析】

由等差数列的求和公式、等比数列的求和公式,结合数列的递推式,可得b1a2,求得数列{an}{bn}的通项公式,再由数列的分组求和,结合等差数列和等比数列的求和公式,可得所求和.

{an}是等差数列,其前n项和

由等差数列的求和公式可得b10,即b1

Snn22n

a1S1=﹣1anSnSn1n22n﹣(n12+2n1)=2n3

an2n3nN*

{bn}是等比数列,其前n项和

b13bnTnTn13n3n1=﹣23n1

3=﹣2,即a2

bn +ann+2n

数列{ bn +an}的前5项和为(1+2+…+5+2+4+…+32

5×677

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲,乙两个平行班,每班50.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为成绩优秀”.

1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均成绩优秀的概率;

2)由以上统计数据填写下面2x2列联表,并判断是否有的把握认为成绩优秀与教学方式有关.


甲班(A方式)

乙班(B方式)

总计

成绩优秀




成绩不优秀




总计




附:

/tr>

P

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果无穷数列{an}的所有项恰好构成全体正整数的一个排列,则称数列{an}具有性质P

(Ⅰ)若ankN*),判断数列{an}是否具有性质P,并说明理由,

(Ⅱ)若数列{an}具有性质P,求证:{an}中一定存在三项aiajakijk)构成公差为奇数的等差数列;

(Ⅲ)若数列{an}具有性质P,则{an}中是否一定存在四项aiajakal,(ijkl)构成公差为奇数的等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

同步练习册答案