精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

1)讨论函数的单调性;

2,关于的方程有唯一解,求的值.

【答案】1)当为奇数时,函数为增函数,当为偶数时,函数为减函数,在为增函数

2

【解析】

1)利用导数判断函数的单调性即可;

2)利用,将方程化简,得到函数,将方程问题转化为函数零点问题,再结合导数研究即可得解.

解:(1)因为函数

所以,(),

所以,(),

为奇数时,,即函数为增函数,

为偶数时,

所以当时,,当时,

即函数为减函数,在为增函数;

2)当

则关于的方程有唯一解等价于函数只有1个零点,

,即,①

时,,当时,

即函数为减函数,在为增函数,

由题意有,即,②

①得:

,则函数为增函数,且

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长途车站P与地铁站O的距离为千米,从地铁站O出发有两条道路l1l2,经测量,l1l2的夹角为45°,OPl1的夹角满足tan(其中0<θ<),现要经过P修条直路分别与道路l1l2交汇于AB两点,并在AB处设立公共自行车停放点.

1)已知修建道路PAPB的单位造价分别为2m/千米和m/千米,若两段道路的总造价相等,求此时点AB之间的距离;

2)考虑环境因素,需要对OAOB段道路进行翻修,OAOB段的翻修单价分别为n/千米和n/千米,要使两段道路的翻修总价最少,试确定AB点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:(x32+(y22r2r>0),若直线3xy3上存在一点P,在圆C上总存在不同的两点MN,使得点M是线段PN的中点,则圆C的半径r的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?

(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?

总计

男生身高

女生身高

总计

(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.

参考公式:

参考数据:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了位农民。若每个农民的年收人相互独立,问:这位农民中的年收入不少于千元的人数最有可能是多少?

附:参考数据与公式

则①;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为坐标原点,焦点在轴上,离心率,以椭圆的长轴和短轴为对角线的四边形的周长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若经过点的直线交椭圆两点,是否存在直线 ,使得到直线的距离满足恒成立,若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三期中考试后,数学教师对本次全部学生的数学成绩按120进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:

分数段(分)

总计

频数

频率

0.25

1)求表中的值及成绩在范围内的样本数;

2)从成绩内的样本中随机抽取4个样本,设其中成绩在内的样本个数为随机变量,求的分布列及数学期望

3)若把样本各分数段的频率看作总体相应各分数段的概率,现从全校高三期中考试数学成绩中随机抽取5个,求其中恰有2个成绩在内的概率.

查看答案和解析>>

同步练习册答案