(本小题满分14分)
已知:函数是定义在上的偶函数,当时,为实数).
(1)当时,求的解析式;
(2)若,试判断上的单调性,并证明你的结论;
(3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
在边长为4的正方形ABCD上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P点移动的路程为x,△ABP的面积为y=f(x).
(1)求△ABP的面积与P移动的路程间的函数关系式;
(2)作出函数的图象,并根据图象求y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数, 其中为常数,且函数图像过原点.
(1) 求的值;
(2) 证明函数在[0,2]上是单调递增函数;
(3) 已知函数, 求函数的零点
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分分)
已知函数.(为常数,)
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,在上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
某旅游景区的观景台P位于高(山顶到山脚水平面M的垂直高度PO)为2km的山峰上,山脚下有一段位于水平线上笔直的公路AB,山坡面可近似地看作平面PAB,且△PAB为等腰三角形.山坡面与山脚所在水平面M所成的二面角为α(0°<α<90°),且sinα=.现从山脚的水平公路AB某处C0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n-1段依次为C0C1,C1C2,C2C3,…,Cn-1Cn(如图所示),且C0C1,C1C2,C2C3,…,Cn-1Cn与AB所成的角均为β,其中0<β<90°,sinβ=.试问:
(1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q处修建上山缆车索道站,索道PQ依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?
(2)若修建xkm盘山公路,其造价为 a万元.修建索道的造价为2a万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问:怎样剪,才能使剩下的残料最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com