精英家教网 > 高中数学 > 题目详情
11.已知关于x的方程ax2-2x+1=0至多有一根,则实数a的取值范围是{a|a=0或a≥1}.

分析 由“函数f(x)=ax2-2x+1至多有一个零点”,则有函数图象与x轴至多有一个交点,即相应方程至多有一个根,用判别式法求解即可,要注意a的讨论.

解答 解:当a=0时,f(x)=ax2-2x+1=-2x+1=0,
∴x=$\frac{1}{2}$符合题意,
当a≠0时,f(x)=ax2-2x+1=0,
∵函数f(x)=ax2-2x+1至多有一个零点,
∴△=4-4a≤0,
∴a≥1,
综上,a的取值范围是:{a|a=0或a≥1}.
故答案为:{a|a=0或a≥1}.

点评 本题主要考查函数的零点,即考查二次函数的图象与x轴的交点的横坐标,对应方程的根,要注意数形结合思想的应用以及字母a的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.点(4,a)到直线4x-3y-1=0的距离不大于4,则a的取值范围为[$\frac{5}{3}$,$\frac{35}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=log3(x+1)+$\sqrt{4-{2}^{x}}$的定义域是(-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x(x-a).
(1)当x∈[0,1]时,f(x)有最小值-3,求实数a的值;
(2)若函数g(x)=f(x)-lnx有零点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对任意的实数x都有f(x)=f(-x),且f(x)在区间(0,+∞)上是增函数,若x1>0,x1+x2<0,则(  )
A.f(x1)>f(x2B.f(x1)=f(x2
C.f(x1)<f(x2D.无法比较f(x1)与f(x2)的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x)对任意的实数x,y∈R都有f(x+y)=f(x)+f(y)且x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)若f(4)=6,解不等式f(3x2-x-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知有下列四个命题,其中正确的有①③④
①若 p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
③设x,y∈R,命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若x,y,z∈R+则$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某设备的使用年限x和维修费用y(万元)有如下统计数据
x3456
y2.5344.5
(1)请根据上表提供的数据,求出y与x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)试估计当使用年限为10年时,维修费用是多少?
(参考数据$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$,其中($\overline{x}$,$\overline{y}$)为样本中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)的部分图象如图所示,函数g(x)=sin(2x+φ)(0<φ<π)为偶函数,要得到g(x)的图象,只需将y=f(x)的图象向(  )平移(  )个单位.
A.右:$\frac{π}{6}$B.左:$\frac{π}{6}$C.右:$\frac{π}{12}$D.左:$\frac{π}{12}$

查看答案和解析>>

同步练习册答案