精英家教网 > 高中数学 > 题目详情
如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.
分析:(I)由题设知BC=5,平面APB⊥平面ABC,∠PAB是二面角P-AC-B的平面角,由此能求出二面角P-BC-A的正切值.
(II)以AC为x轴,以AB为y轴,以过点A作MP的平行线为z轴,建立空间直角坐标系,利用向量法能求出二面角C-PB-A的正切值.
解答:解:(I)∵△ABC中,∠BAC=90°,AB=4,AC=3,
∴BC=5,
∵平面ABC外一点P在平面ABC内的射影是AB中点M,
∴平面APB⊥平面ABC,
∵∠BAC=90°,∴AC⊥平面APB,
∴∠PAB是二面角P-AC-B的平面角,
∵二面角P-AC-B的大小为45°,
∴∠PAB=45°,
∴PM=AM=
1
2
AB
=2,
作MD⊥BC,交BC于D,连接PD,
则∠PDM是二面角P-BC-A的平面角,
∵△BDM∽△BAC,∴
BM
BC
=
DM
AC

DM=
BM•AC
BC
=
2×3
5
=
6
5

∴tan∠PDM=
PM
DM
=
2
6
5
=
5
3

故二面角P-BC-A的正切值为
5
3

(II)以AC为x轴,以AB为y轴,以过点A作MP的平行线为z轴,建立空间直角坐标系,
∵△ABC中,∠BAC=90°,AB=4,AC=3,PM=2,AM=2,
∴C(3,0,0),B(0,4,0),P(0,2,2),A(0,0,0),
CP
=(-3,2,2)
CB
=(-3,4,0)
AP
=(0,2,2)
AB
=(0,4,0)

设平面CPB的法向量为
m
=(x1y1z1)
,则
m
CP
=0
m
CB
=0

-3x1+2y1+2z1=0
-3x1+4y1=0
,解得
m
=(4,3,3)

设平面APB的法向量为
n
=(x2y2z2)
,则
n
AP
=0
n
AB
=0

2y2+2z2=0
4y2=0
,解得
n
=(1,0,0)

设二面角C-PB-A的平面角为θ,
cosθ=|cos<
m
n
>|=
4
34

∴tanθ=
3
2
4

∴二面角C-PB-A的正切值为
3
2
4
点评:本题考查二面角的正切值的求法,解题时要认真审题,合理地化立体问题为平面问题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,BC=2
3
AB
AC
=4,
AC
CB
=2
,双曲线M是以B、C为焦点且过A点.
(Ⅰ)建立适当的坐标系,求双曲线M的方程;
(Ⅱ)设过点E(1,0)的直线l分别与双曲线M的左、右支交于
F、G两点,直线l的斜率为k,求k的取值范围.;
(Ⅲ)对于(Ⅱ)中的直线l,是否存在k≠0使|OF|=|OG|若有求出k的值,若没有说明理由.(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
AP
=m
AB
+
2
11
AC
,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,
求证:PB2=PE•PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,△ABC中,∠B=60°,AD,CE是角平分线.
求证:AE+CD=AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,点D在BC边上,且AC=2,BC=2.5,AD=1,BD=0.5,则AB的长为
 
精英家教网

查看答案和解析>>

同步练习册答案