精英家教网 > 高中数学 > 题目详情
16.已知定义域为R的函数f(x)=$\frac{b-{2}^{-x}}{{2}^{-x+1}+2}$是奇函数.
(1)求b的值;
(2)判断并证明函数f(x)的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0有解,求k的取值范围.

分析 (1)f(x)为奇函数,利用f(0)=0,解得b,并且验证即可得出..
(2)由(1)可得:f(x)=$\frac{1-{2}^{-x}}{{2}^{-x+1}+2}$,函数f(x)为增函数.任取实数x1<x2,只要证明f(x1)-f(x2)<0即可.
(3)f(x)为奇函数,由不等式f(t2-2t)+f(2t2-k)<0化为f(t2-2t)<f(k-2t2),再利用单调性即可得出.

解答 解:(1)∵f(x)为奇函数,∴f(0)=0,f(0)=$\frac{b-1}{4}$=0,解得b=1.经过验证满足条件.
(2)由(1)可得:f(x)=$\frac{1-{2}^{-x}}{{2}^{-x+1}+2}$,函数f(x)为增函数.
证明:任取实数x1<x2,则f(x1)-f(x2)=$\frac{1-{2}^{-{x}_{1}}}{{2}^{-{x}_{1}+1}+2}$-$\frac{1-{2}^{-{x}_{2}}}{{2}^{-{x}_{2}+1}+2}$=$\frac{4({2}^{-{x}_{2}}-{2}^{-{x}_{1}})}{({2}^{-{x}_{1}+1}+2)({2}^{-{x}_{2}+1}+2)}$,
∵x1<x2,∴-x2<-x1,${2}^{-{x}_{2}}$<${2}^{-{x}_{1}}$,
∴${2}^{-{x}_{2}}$-${2}^{-{x}_{1}}$<0,
又$({2}^{-{x}_{1}+1}+2)({2}^{-{x}_{2}+1}+2)$>0,
∴f(x1)-f(x2)<0,
∴函数f(x)为增函数.
(3)∵f(x)为奇函数,由不等式f(t2-2t)+f(2t2-k)<0化为f(t2-2t)<-f(2t2-k),即f(t2-2t)<f(k-2t2),
又∵f(t)为增函数,t2-2t<k-2t2,∴3t2-2t<k.
当t=-$\frac{1}{3}$时,3t2-2t有最小值-$\frac{1}{3}$,∴k$>-\frac{1}{3}$.

点评 本题考查了不等式的性质、函数的单调性与奇偶性、二次函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a,b,c均为正数,且2a=log${\;}_{\frac{1}{2}}$a,($\frac{1}{2}$)b=log${\;}_{\frac{1}{2}}$b,($\frac{1}{2}$)c=log2c,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A={x|-1<x<3},B={x|2<x<7}.
(1)求A∩B,A∪B;
(2)求CR(A∩B),CR(A∪B),(CRA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=x3+ax2+bx在x=-2处取极值28.
(1)求常数a、b的值;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.幂函数f(x)的图象过点(4,$\frac{1}{2}$),那么f-1(8)的值是(  )
A.$\frac{1}{64}$B.64C.$\frac{\sqrt{2}}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校办了一场知识大赛,共分两组.其中甲组得满分的有1名女生和3名男生,乙组得满分的有2名女生和4名男生.现从得满分的同学中,每组各任选2名同学,代表学校参加市级比赛
(1)求选出的4名同学中恰有1名女生的概率;
(2)设X为选出的4名同学中女生的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$=(-$\sqrt{3}$,1),$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=-3,向量$\overrightarrow{a}$为单位向量,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P1(x1,2015)和P2(x2,2015)在二次函数f(x)=ax2+bx+24的图象上,则f(x1+x2)的值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则它的母线长为2.

查看答案和解析>>

同步练习册答案