精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)是周期为2的函数,当-1≤x≤1时,f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x<0}\\{kx-1,0≤x≤1}\end{array}\right.$,则f($\frac{17}{4}$)=(  )
A.0B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{1}{4}$

分析 由函数的周期性可得f(-1)=f(1),可得k=2,再由题意可得f($\frac{17}{4}$)=f($\frac{1}{4}$)=$\frac{1}{4}$k-1,代入k值计算可得.

解答 解:∵函数周期为2,∴f(-1)=f(1),
又∵当-1≤x≤1时,f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x<0}\\{kx-1,0≤x≤1}\end{array}\right.$,
∴(-1)2=k×1-1,解得k=2,
∴f($\frac{17}{4}$)=f(2×2+$\frac{1}{4}$)=f($\frac{1}{4}$)=$\frac{1}{4}$k-1=-$\frac{1}{2}$
故选:B

点评 本题考查函数的周期性,涉及分段函数的解析式,求出k值是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某大学的大门蔚为壮观,有个学生想搞清楚门洞拱顶D到其正上方A点的距离,他站在地面C处,利用皮尺量得BC=9米,利用测角仪测得仰角∠ACB=45°,测得仰角∠BCD后通过计算得到sin∠ACD=$\frac{\sqrt{26}}{26}$,则AD的距离为(  )
A.2米B.2.5米C.3米D.4米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x,y,z均为正实数,求证:x2+y2+z2≥xy+xz+yz.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在三棱锥S-ABC中,A′,B′,C′分别在棱SA,SB,SC上,且SA′:SA=1:2,SB′:SB=1:3,SC′:SC=1:4,求VS-ABC与VS-A′B′C′的比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,b>0,求证:($\frac{{a}^{2}}{b}$)${\;}^{\frac{1}{2}}$+($\frac{{b}^{2}}{a}$)${\;}^{\frac{1}{2}}$≥a${\;}^{\frac{1}{2}}$+b${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在样本的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其余4个小长方形面积和的$\frac{1}{4}$,且样本容量为50,则中间一组的频数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.把下列程序用程序框图表示出来

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a>b>0,且a+b=6$\sqrt{ab}$,则$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正四棱台上、下底面边长分别为4和8,侧棱长为8,求它的侧面积.

查看答案和解析>>

同步练习册答案