【题目】已知向量,是坐标原点,若,且方向是沿的方向绕着点按逆时针方向旋转角得到的,则称经过一次变换得到,现有向量经过一次变换后得到,经过一次变换后得到,…,如此下去,经过一次变换后得到,设,,,则等于( )
A.B.
C.D.
【答案】B
【解析】
根据题意,可得,,,即当时,一次,变换将逆时针旋转1弧度,再将所得向量的长度再伸长为原来的倍得到向量.因此当时,运用矩阵变换公式,算出逆时针旋转1弧度所得向量,从而得到,,,所以.接下来再对、、、各项在时的情况进行计算,对照所得结果可得只有项是正确的选项
根据题意,,
一次,变换就是将向量逆时针旋转1弧度,再将长度伸长为原来的倍,
即由逆时针旋转1弧度而得,且
设向量逆时针旋转1弧度,所得的向量为,则有,
,即向量逆时针旋转1弧度,
得到向量,再将的模长度伸长为原来的倍,
得到,,
因此当时,,,,即,由此可得
对于,当时,与计算结果不相等,故不正确;
对于,当时,与计算结果相等,故正确;
对于,当时,与计算结果不相等,故不正确;
对于,当时,与计算结果不相等,故不正确
故选:B
科目:高中数学 来源: 题型:
【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量() | 400 | 500 |
概率 |
作物市场价格(元/) | 5 | 6 |
概率 |
(1)设表示在这块地上种植1季此作物的利润,求的分布列(利润产量市场价格成本);
(2)若在这块地上连续3季种植此作物,求这3季中的利润都在区间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=()1﹣x,则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=()x﹣3.
其中所有正确命题的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线经过点,且与极轴所成的角为.
(1)求曲线的普通方程及直线的参数方程;
(2)设直线与曲线交于两点,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点分别为和,短轴的两个端点分别为和,点在椭圆上,且满足,当变化时,给出下列三个命题:
①点的轨迹关于轴对称;②的最小值为2;
③存在使得椭圆上满足条件的点仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图所示多面体中,AD⊥平面PDC,ABCD为平行四边形,E,F分别为AD,BP的中点,AD=,AP=,PC=.
(Ⅰ)求证:EF∥平面PDC;
(Ⅱ)若∠CDP=90°,求证BE⊥DP;
(Ⅲ)若∠CDP=120°,求该多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1:,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心极坐标为(3,π),半径为1的圆.
(1)求曲线C1的参数方程和C2的直角坐标方程;
(2)设M,N分别为曲线C1,C2上的动点,求|MN|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC﹣A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.
(1)证明:EF⊥BC;
(2)求直线EF与平面A1BC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆M:1(a>b>0)的长轴长为2,离心率为,过点(0,1)的直线l与M交于A,B两点,且.
(1)求M的方程;
(2)求点P的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com