精英家教网 > 高中数学 > 题目详情

【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

【答案】D
【解析】解:当n=k时,等式左端=1+2+…+k2
当n=k+1时,等式左端=1+2+…+k2+k2+1+k2+2+…+(k+1)2 , 增加了项(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
故选D.
首先分析题目求用数学归纳法证明1+2+3+…+n2= 时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4名男生,3名女生排成一排:
(1)从中选出3人排成一排,有多少种排法?
(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?
(3)要求女生必须站在一起,则有多少种不同的排法?
(4)若3名女生互不相邻,则有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|+ ﹣1(x≠0)
(1)当m=1时,判断f(x)在(﹣∞,0)的单调性,并用定义证明;
(2)若对任意x∈(1,+∞),不等式 f(log2x)>0恒成立,求m的取值范围.
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自然数按如图的规律排列:则上起第2007行左起2008列的数为(

A.20072
B.20082
C.2006×2007
D.2007×2008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣1,1)上的奇函数 是增函数,且
(1)求函数f(x)的解析式;
(2)解不等式f(t﹣1)+f(2t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将自然数按如下规则“放置”在平面直角坐标系中,使其满足条件:①每个自然数“放置”在一个“整点”(横纵坐标均为整数的点)上;②0在原点,1在(0,1)点,2在(1,1)点,3在(1,0)点,4在(1,﹣1)点,5在(0,﹣1)点,…,即所有自然数按顺时针“缠绕”在以“0”为中心的“桩”上,则放置数字(2n+1)2 , n∈N*的整点坐标是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x. 给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有(
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

同步练习册答案