精英家教网 > 高中数学 > 题目详情
已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( )
A.(x+1)2+(y-1)2=2
B.(x-1)2+(y+1)2=2
C.(x-1)2+(y-1)2=2
D.(x+1)2+(y+1)2=2
【答案】分析:圆心在直线x+y=0上,排除C、D,再验证圆C与直线x-y=0及x-y-4=0都相切,就是圆心到直线等距离,即可.
解答:解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;
验证:A中圆心(-1,1)到两直线x-y=0的距离是
圆心(-1,1)到直线x-y-4=0的距离是.故A错误.
故选B.
点评:一般情况下:求圆C的方程,就是求圆心、求半径.本题是选择题,所以方法灵活多变,值得探究.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(  )
A、(x+1)2+(y-1)2=2B、(x-1)2+(y+1)2=2C、(x-1)2+(y-1)2=2D、(x+1)2+(y+1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与直线x-y-1=0及直线x-y-7=0都相切,且圆心在直线x+y=0上,则圆c的标准方程为
(x-2)2+(y+2)2=
9
2
(x-2)2+(y+2)2=
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与直线x+y-2
2
=0
相切于点A(
2
2
)
,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)过A作两条斜率分别是2和-2的直线,且分别与圆C相交于B、D两点,求直线BD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y-4=0上,则圆C的方程为(  )

查看答案和解析>>

同步练习册答案