精英家教网 > 高中数学 > 题目详情
3.某地气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为$y=\left\{\begin{array}{l}\frac{16}{8-x}-1,0≤x≤4\\ 5-\frac{1}{2}x,4<x≤10\end{array}\right.$,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒a(1≤a≤4)个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a的最小值(精确到0.1,参考数据:$\sqrt{2}$取1.4).

分析 (1)利用已知可得:一次喷洒4个单位的净化剂,浓度f(x)=4y=$\left\{\begin{array}{l}{\frac{64}{8-x}-4,0≤x≤4}\\{20-2x,4<x≤10}\end{array}\right.$,分类讨论解出f(x)≥4即可;
(2)设从第一次喷洒起,经x(6≤x≤10)天,可得浓度g(x)=2(5-$\frac{1}{2}$x)+a[$\frac{16}{8-(x-6)}$-1],变形利用基本不等式即可得出.

解答 解:(1)∵一次喷洒4个单位的净化剂,
∴浓度f(x)=4y=$\left\{\begin{array}{l}{\frac{64}{8-x}-4,0≤x≤4}\\{20-2x,4<x≤10}\end{array}\right.$
则当0≤x≤4时,由$\frac{64}{8-x}$-4≥4,
解得x≥0,∴此时0≤x≤4.
当4<x≤10时,由20-2x≥4,解得x≤8,
∴此时4<x≤8.
综合得0≤x≤8,
若一次投放4个单位的制剂,则有效净化时间可达8天.
(2)设从第一次喷洒起,经x(6≤x≤10)天,
浓度g(x)=2(5-$\frac{1}{2}$x)+a[$\frac{16}{8-(x-6)}$-1]=(14-x)+$\frac{16a}{14-x}$-a-4
∵14-x∈[4,8],而1≤a≤4,
∴4$\sqrt{a}$∈[4,8],
故当且仅当14-x=4$\sqrt{a}$时,y有最小值为8$\sqrt{a}$-a-4.
令8$\sqrt{a}$-a-4≥4,
解得24-16$\sqrt{2}$≤a≤4,
∴a的最小值为24-16$\sqrt{2}$≈1.6.

点评 本题考查了分段函数的意义与性质、基本不等式、分类讨论等基础知识与基本技能方法,考查了分析问题和解决实际问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.计算:0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x2-2≥0},B={x|x2-4x+3≤0}则A∪B=(  )
A.RB.{x|x≤-$\sqrt{2}$或x≥1}C.{x|x≤1或a≥2}D.{x|x≤2或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作出下列函数图象.
(1)y=x2-2x+3,x∈(-1,3];
(2)$y=\frac{|x|-1}{{|{x^2}-1|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P为椭圆$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一点,F1,F2为焦点,且∠F1PF2=30°.
(1)求△F1PF2的周长;
(2)求|PF1|•|PF2|;
(3)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了得到函数$y=\frac{1}{2}sin(2x+\frac{π}{3})$的图象,可以把函数$y=\frac{1}{2}sin2x$的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y≤2,x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(cosx,2cosx),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}+m(m∈R)$,且当x∈[0,$\frac{π}{2}$]时,f(x)的最小值为2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再把所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于矩形ABCD,若AB=3,BC=4,以边AB为轴旋转形成圆柱,那么绕圆柱一周的绳子由C点到D点最短多长?

查看答案和解析>>

同步练习册答案