精英家教网 > 高中数学 > 题目详情
8.在直角坐标系xoy中,不共线的四点A,B,C,D满足$\overrightarrow{AB}=\overrightarrow{DC}$,且$\overrightarrow{AC}=(1,2)$,$\overrightarrow{DB}=(3,4)$,求:
(1)$\overrightarrow{AB}\;,\;\overrightarrow{AD}$的坐标;
(2)四边形ABCD的面积.

分析 (1)由$\overrightarrow{AB}=\overrightarrow{DC}$,且A,B,C,D不共线,可得ABCD为平行四边形,记AC与BD的交点为O,根据平面向量的坐标运算即可得解.
(2)由(1)可求|$\overrightarrow{AB}$|,|$\overrightarrow{AD}$|的值,从而可求cos∠BAD=$\frac{\overrightarrow{AB}•\overrightarrow{AD}}{|\overrightarrow{AB}|×|\overrightarrow{AD}|}$,结合范围0<∠BAD<π可求sin∠BAD的值,利用三角形面积公式即可求解.

解答 解:(1)因为$\overrightarrow{AB}=\overrightarrow{DC}$,且A,B,C,D不共线,
所以四边形ABCD为平行四边形,记AC与BD的交点为O,
则$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}=\frac{\overrightarrow{AC}+\overrightarrow{DB}}{2}$=(2,3),
$\overrightarrow{AD}=\overrightarrow{AO}-\overrightarrow{DO}=\frac{\overrightarrow{AC}-\overrightarrow{DB}}{2}$=(-1,-1)…6分
(2)由(1)可知,|$\overrightarrow{AB}$|=$\sqrt{{2}^{2}+{3}^{2}}=\sqrt{13}$,|$\overrightarrow{AD}$|=$\sqrt{(-1)^{2}+(-1)^{2}}$=$\sqrt{2}$,
cos∠BAD=$\frac{\overrightarrow{AB}•\overrightarrow{AD}}{|\overrightarrow{AB}|×|\overrightarrow{AD}|}$=$\frac{2×(-1)+3×(-1)}{\sqrt{13}×\sqrt{2}}$=-$\frac{5}{\sqrt{26}}$,
因为sin2∠BAD+cos2∠BAD=1,且0<∠BAD<π,
所以sin∠BAD=$\frac{1}{\sqrt{26}}$,
故平行四边形ABCD的面积为:|$\overrightarrow{AB}$||$\overrightarrow{AD}$|sin∠BAD=$\sqrt{13}×\sqrt{2}×\frac{1}{\sqrt{26}}=1$…14分

点评 本题主要考查了平面向量的坐标运算,向量夹角的求法,考查了同角的三角函数关系式的应用,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$且f(x+2)=f(x).若方程f(x)-kx-2=0有三个不相等的实数根,则实数k的取值范围是(  )
A.$(\frac{1}{3},1)$B.$(-\frac{1}{3},-\frac{1}{4})$C.$(\frac{1}{3},1)∪(-1,-\frac{1}{3})$D.$(-\frac{1}{3},-\frac{1}{4})∪(\frac{1}{4},\frac{1}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知非零向量$\overrightarrow{a}$=3$\overrightarrow{b}$+3$\overrightarrow{c}$,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,则|$\overrightarrow{a}$|=3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$,那么在下列区间中含有函数f(x)零点的是(  )
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦点F1,作垂直于x轴的弦,求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆的中心在原点,焦点在x轴上,直线x-y-1=0经过椭圆的一个焦点和一个顶点,
(1)求椭圆的标准方程;
(2)直线与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和Sn=5n2-n,则a6+a7+a8+a9+a10的值为(  )
A.370B.270C.250D.490

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在⊙O中,AB=2CD.求证:$\widehat{AB}$>2$\widehat{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=logax(a>0且a≠1),函数g(x)=-x2+bx+c,且f(4)-f(2)=1,g(x)的图象过点A(4,-5)及B(-2,-5).
(1)求f(x)和g(x)的表达式;
(2)求函数f[g(x)]的定义域和值域.

查看答案和解析>>

同步练习册答案