精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}中,a58a1023

1)令,证明:数列{bn}是等比数列;

2)求数列{nbn}的前n项和Sn

【答案】1)见解析(2Sn=(n12n+1+2

【解析】

1)由题意可得an3n-7,则,即可得证;

2)由nbnn2n利用错位相减法即可求得Sn,即可得解.

1)证明:设等差数列{an}的公差为d,∵a58a1023

a1+4d8a1+9d23

联立解得:a1=-4d3

an=-4+3n1)=3n-7

2

∴数列{bn}是等比数列,首项为2,公比为2

2nbnn2n

∴数列{nbn}的前n项和Sn2+2×22+3×23+……+n2n

2Sn22+2×23+……+n12n+n2n+1

∴两式相减得﹣Sn2+22+……+2nn2n+1n2n+1

Sn=(n12n+1+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若函数在区间上是单调函数,试求的取值范围;

2)若函数在区间上恰有3个零点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,椭圆的极坐标方程为.

1)求直线的普通方程(写成一般式)和椭圆的直角坐标方程(写成标准方程);

2)若直线与椭圆相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,abc分别为角ABC的对边,且满足cosC+sinC

1)求角B的大小;

2)若a+c的最大值为10,求边长b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如表:

个人所得税税率表调整前

个人所得税税率表调整后

免征额3500

免征额5000

级数

全月应纳税所得额

税率

级数

全月应纳税所得额

税率

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?

2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

收入

人数

40

30

10

8

7

5

先从收入在的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量X表示抽到作为宣讲员的收入在元的人数,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案