精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的序号是_______.

①存在某个位置,使得

②翻折过程中,的长是定值;

③若,则

④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

【答案】②④

【解析】

对于①,取AD中点E,连接ECMDF,可得到ENNF,又ENCN,且三线NENFNC共面共点,不可能,

对于②,可得由∠NEC=∠MAB1(定值),NEAB1(定值),AMEC(定值),由余弦定理可得NC是定值.

对于③,取AM中点O,连接B1ODO,易得AM⊥面ODB1,即可得ODAM,从而ADMD,显然不成立.

对于④:当平面B1AM⊥平面AMD时,三棱锥B1AMD的体积最大,可得球半径为1,表面积是4π.

对于①:如图1,取AD中点E,连接ECMDF,则NEAB1NFMB1

如果CNAB1,可得到ENNF,又ENCN,且三线NENFNC共面共点,不可能,故①错.

对于②:如图1,可得由∠NEC=∠MAB1(定值),NEAB1(定值),AMEC(定值),

由余弦定理可得NC2NE2+EC2﹣2NEECcos∠NEC,所以NC是定值,故②正确.

对于③:如图2,取AM中点O,连接B1ODO,易得AM⊥面ODB1,即可得ODAM,从而ADMD,显然不成立,可得③不正确.

对于④:当平面B1AM⊥平面AMD时,三棱锥B1AMD的体积最大,易得AD中点H就是三棱锥B1AMD的外接球的球心,球半径为1,表面积是4π.故④正确.

故答案为:②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上的点到焦点的最长距离为

1)求椭圆C的方程;

2)过点P02)的直线l(不过原点O)与椭圆C交于两点ABM为线段AB的中点.

(ⅰ)证明:直线OMl的斜率乘积为定值;

(ⅱ)求OAB面积的最大值及此时l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为

(Ⅰ)求的极坐标方程;

(Ⅱ)设点的极坐标为,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点到短轴的端点的距离为,离心率为

1)求椭圆的方程;

2)过点的直线交椭圆两点,过点作平行于轴的直线,交直线于点,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

(1)求曲线的方程;

(2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中所有正确的序号是_________

①两直线的倾斜角相等,则斜率必相等;

②若动点到定点和定直线的距离相等,则动点的轨迹是抛物线;

③已知是椭圆的两个焦点,过点的直线与椭圆交于两点,则的周长为

④曲线的参数方程为为参数,则它表示双曲线且渐近线方程为

⑤已知正方形,则以为焦点,且过两点的椭圆的离心率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线所围成的封闭区域为D.

1)求区域D的面积;

2)设过点的直线与曲线C交于两点PQ,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆.

1)求动圆圆心的轨迹方程;

2)若上存在两个点,(1)中曲线上有两个点,并且三点共线,三点共线,,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均体育锻炼时间在的学生评价为“锻炼达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

20

110

合计

并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?

(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,

(i)求这10人中,男生、女生各有多少人?

(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案