【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)斜率为的直线过点,且与抛物线交于两点,设点,的面积为,求的值;
(3)若直线过点,且与椭圆交于两点,点关于轴的对称点为,直线的纵截距为,证明:为定值.
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,并且,,数列满足:,,记数列的前项和为.
(1)求数列的通项公式及前项和公式;
(2)求数列的通项公式及前项和公式;
(3)记集合,若的子集个数为16,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于、,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线、、都具有性质H.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,(为正整数)都在函数的图象上.
(1)若数列是等差数列,证明:数列是等比数列;
(2)设,过点的直线与两坐标轴所围成的三角形面积为,试求最小的实数,使对一切正整数恒成立;
(3)对(2)中的数列,对每个正整数,在与之间插入个3,得到一个新的数列,设是数列的前项和,试探究2016是否是数列中的某一项,写出你探究得到的结论并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)当时,的最小值;
(2)讨论函数的奇偶性,并说明理由;
(3)当时,是否存在实数,使得不等式对任意恒成立?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线与轴相交于点,设坐标原点为.
(1)求双曲线的方程,并求出点的坐标(用表示);
(2)设点关于轴的对称点为,直线与轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若过点的直线与双曲线交于两点,且,试求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)若,证明:函数在区间上是单调增函数;
(2)求函数在区间上的最大值;
(3)若函数的图像过原点,且的导数,当时,函数过点的切线至少有2条,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照如下规则构造数表:第一行是:2;第二行是:;即3,5,第三行是:即4,6,6,8;(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)
2
3,5
4,6,6,8
5,7,7,9,7,9,9,11
……………………………………
若第行所有的项的和为.
(1)求;
(2)试求与的递推关系,并据此求出数列的通项公式;
(3)设,求和的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com