精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\frac{2}{x}$-ln(x-1)的零点所在的大致区间为(  )
A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)

分析 根据所给的几个区间看出不在定义域中的区间去掉,把所给的区间的两个端点的函数值求出,若一个区间对应的函数值符号相反,得到结果.

解答 解:因为x>0时,-ln(x+1)和$\frac{2}{x}$都是减函数
所以f(x)在x>1是减函数,所有最多一个零点,
f(2)=1-ln1>0,f(3)=$\frac{2}{3}$-ln2=$\frac{2-3ln2}{3}$=$\frac{2-ln8}{3}$,
因为$\sqrt{8}$=2$\sqrt{2}$≈2.828,
所以$\sqrt{8}$>e,
故lne<ln$\sqrt{8}$,
即1<$\frac{1}{2}$ln$\sqrt{8}$,
所以2<ln8,
所以f(2)f(3)<0
所以函数的零点在(2,3)之间.
故选:B.

点评 本题考查函数的零点的判定定理,本题解题的关键是求出区间的两个端点的函数值,进行比较,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)从5位男生与3位女生中选派4名代表参加某项活动,要求其中至少有1位女生,一共有多少种选派方案(用数字作答)
(2)已知($\sqrt{x}$-$\frac{2}{x}$)n的展开式中x的一次项是第3项,求n的值及展开式中二次项系数最大的项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(2016)=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求证:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)设数列{an}的前n项和为Sn,当n≥5时,求证:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以(2$\sqrt{3}$,0)为圆心,截直线y=$\sqrt{3}$x得弦长为8的圆的方程是(x-2$\sqrt{3}$)2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖的方盒,当x等于$\frac{a}{6}$时,方盒的容积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.向量|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥($\overrightarrow{b}$-2$\overrightarrow{a}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的数量积等于(  )
A.-1B.-$\frac{10}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(cosx,1),x∈R.
(1)当x=$\frac{π}{4}$时,求$\overrightarrow a•\overrightarrow b$的值;
(2)求函数f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.6和5.6C.2和5.6D.2和2.4

查看答案和解析>>

同步练习册答案