精英家教网 > 高中数学 > 题目详情

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

【答案】解:()用表示甲摸到的数字,表示乙摸到的数字)表示甲、乙各

摸一球构成的基本事件,则基本事件有:

,共16个;3

设:甲获胜的的事件为A,则事件A包含的基本事件有:,共有6个;则…………………………6

)设:甲获胜的的事件为B,乙获胜的的事件为C;事件B所包含的基本事件有:,共有4个;则

…………………………10

,所以这样规定不公平. …………………11

答:()甲获胜的概率为;)这样规定不公平. ………… 12

【解析】略

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;

(2)在选取的样本中,从竞赛成绩在分以上(含)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点,直线ll1相交于点P.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过微克/立方米,24小时平均浓度不得超过微克/立方米.某城市环保部门随机抽取了一居民区去年20天24小时平均浓度的监测数据,数据统计如下:

组别

浓度

(微克/立方米)

频数(天)

频率

第一组

3

0.15

第二组

12

0.6

第三组

3

0.15

第四组

2

0.1

1从样本中24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天

24小时平均浓度超过75微克/立方米的概率;

2求样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑判断该居民区的环境是

否需要改进说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,底面分别是的中点.

1求证:平面

2,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,面为矩形,,且

(1)求证:平面

(2)求所成角的余弦值;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-2(a+1)x+2alnx

(1)若a=2. 求f(x)的极值. (2)若a>0. 求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

1的值;

2求函数的极值.

3是单调函数,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(A)已知数列满足,其中 .

(1)求 ,并猜想的表达式(不必写出证明过程);

(2)由(1)写出数列的前项和,并用数学归纳法证明.

(B)已知数列的前项和为,且满足 .

(1)猜想的表达式,并用数学归纳法证明;

(2)设 ,求的最大值.

查看答案和解析>>

同步练习册答案