精英家教网 > 高中数学 > 题目详情
已知两点M(2,0)、N(-2,0),平面上动点P满足由|
MN
|•|
MP
|+
MN
MP
= 0

(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.
分析:(1)设P(x,y),由|
MN
|•|
MP
|+
MN
MP
= 0
,得4
(x-2) 2+y2
+(-4x-8)=0
,由此能求出点P的轨迹C的方程.
(2)设A(x1,y1),B(x2,y2),将x=4-my,代入C的方程,得y2+8my-32=0,由x1x2+y1y2=16,知不存在实数m使OA⊥OB成立.
解答:解:(1)设P(x,y),由|
MN
|•|
MP
|+
MN
MP
= 0

4
(x-2) 2+y2
+(-4x-8)=0

化简,得y2=8x,
∴点P的轨迹C的方程为y2=8x.
(2)设A(x1,y1),B(x2,y2),将x=4-my,代入C的方程,得y2=32-8my,
即y2+8my-32=0,
∴y1y2=-32,x1x2=
y12
8
y22
8
=16

x1x2+y1y2=16,
∵OA⊥OB?x1x2+y1y2=0,
∴不存在实数m使OA⊥OB成立.
点评:本题考查直线与圆锥曲线的综合问题,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
MN
|•|
MP
|+
MN
NP
=0,则动点P(x,y)的轨迹方程为(  )
A、y2=8x
B、y2=-8x
C、y2=4x
D、y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
MN
|•|
MP
|+
MN
MP
=0,则动点P(x,y)的轨迹方程为
y2=-8x
y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-2,0),N(2,0),点P满足
PM
PN
=12
,则点P的轨迹方程为
x2+y2=16
x2+y2=16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知两点M(-2,0),N(2,0),动点P(x,y)在y轴上的射影为H,|
PH
|
是2和
PM
PN
的等比中项.
(I)求动点P的轨迹方程;
(II)若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程.

查看答案和解析>>

同步练习册答案