【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值,由检测结果得到如下频率分布表和频率分布直方图.
分组 | 频数 | 频率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合计 | 100 | 1 |
(1)求图中,的值;
(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间和内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该批零件重量的概率分布.若这批零件共400件,现有两种销售方案:
方案一:对剩余零件不再进行检测,回收处理这100件样本中的不合格品,余下所有零件均按150元/件售出;
方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.
仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.
科目:高中数学 来源: 题型:
【题目】将曲线上每个点的横坐标伸长为原来的倍(纵坐标不变),得到的图象,则下列说法正确的是( )
A.的图象关于直线对称
B.在上的值域为
C.的图象关于点对称
D.的图象可由的图象向右平移个单位长度得到
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.钱B.钱C.钱D.钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果同时满足以下三个条件:①任意的,总有;②;③若,,,总有成立,则称函数为理想函数.
(1)证明:若函数为理想函数,则;
(2)证明:函数,是理想函数;
(3)证明:若函数为理想函数,假定存在,使得且,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com