精英家教网 > 高中数学 > 题目详情
已知数列an的前n项和为Sn,a1=1,Sn=an+1-3n-1,n∈N*
(Ⅰ)证明:数列an+3是等比数列;
(Ⅱ)对k∈N*,设f(n)=
Sn-an+3n  n=2k-1 
log2(an+3)  n=2k.
求使不等式cos(mπ)[f(2m2)-f(m)]≤0成立的正整数m的取值范围..
分析:(I)把Sn和Sn+1相减整理求得an+1=2an+3,整理出3+an+1=2(3+an),判断出数列{3+an}是首项为4,公比为2的等比数列即可.
(II)把(I)中的an代入f(n),求得其通项公式,进而对m进行奇偶数讨论:①当m为偶数时②当m为奇数时结合二项式定理进行放缩,即可得出:当m∈1,3时,不等式cos(mπ)[f(2m2)-f(m)]≤0成立.
解答:解:(I)由Sn=a&n+1-3n-1,则Sn-1=an-3(n-1)-1,n≥2.
两式相减得an+1=2an+3,n≥2.
an+1+3
an+3
=2,  n≥2
.(2分)
又n=1时,a2=5,  
a2+3
a1+3
=2

∴数列an+3是首项为4,公比为2的等比数列.(4分)
(Ⅱ)由(I)知an+3=4•2n-1=2n+1,Sn=an+1-3n-1=2n+2-3n-4.
f(n)=
2n+1-1  n=2k-1  
n+1  n=2k.
(5分)
①当m为偶数时,cos(mπ)=1,f(2m2)=2m2+1,f(m)=m+1,
∴原不等式可化为(2m2+1)-(m+1)≤0,
即2m2-m≤0.
故不存在合条件的m.(7分)
②当m为奇数时,cos(mπ)=-1,f(2m2)=2m2+1,f(m)=2m+1-1.
原不等式可化为2m2+1≥2m+1-1.
当m=1或3时,不等式成立.(9分)
当m≥5时,2m+1-1=2(1+1)m-1=2(Cm0+Cm1+Cm2++Cmm-2+Cmm-1+Cmm)-1≥2m2+2m+3>2m2+1.
∴m≥5时,原不等式无解.(11分)
综合得:当m∈{1,3}时,不等式cos(mπ)[f(2m2)-f(m)]≤0成立.(12分)
点评:本题主要考查了数列的递推式的应用,数列的通项公式和等比关系的确定.应掌握一些常用的数列与不等式的综合的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,且a1=1,Sn=n2an(n∈N),
(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和Sn=
32
(an-1)
,n∈N+
(1)求an的通项公式;
(2)设n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.现在集合An中随机取一个元素y,记y∈B的概率为p(n),求p(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
an
的前n项和为Sn,且Sn=1-an (n∈N*
(I )求数列
an
的通项公式;
(Ⅱ)已知数列
bn
的通项公式bn=2n-1,记cn=anbn,求数列
cn
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an}的前n项和为sn,满足(p-1)sn=p2-an,其中p为正常数,且p≠1.
(1)求证:数列{an}为等比数列,并求出{an}的通项公式;
(2)若存在正整数M,使得当n≥M时,a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)当p=2时,数列an,2xan+1,2yan+2成等差数列,其中x,y均为整数,求出x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn
(Ⅰ)若数列an是等比数列,满足2a1+a3=3a2,a3+2是a2,a4的等差中项,求数列an的通项公式;
(Ⅱ)是否存在等差数列ann∈N*,使对任意n∈N*都有anSn=2n2(n+1)?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案