精英家教网 > 高中数学 > 题目详情
已知命题P:函数在(1,+∞)内单调递增;命题Q:不等式(a-3)x2+(2a-6)x-5<0对任意实数x恒成立,
若P∨Q是真命题,P∧Q是假命题,求实数a的取值范围.
【答案】分析:先求出命题P,Q为真命题时,a的范围,将已知条件P∨Q是真命题,P∧Q是假命题转化为P,Q有一个真命题一个假命题,分p真Q假与Q真P假两类求出a的范围.
解答:解∵命题P为真命题,即
函数在定义域上单调递增;
∴0<a<(5分)
若命题Q为真命题,
不等式(a-3)x2+(2a-6)x-5<0对任意实数x恒成立;
当a-3=0时,不等式为-5<0满足题意,
当a≠0时,令a-3<0且△=(2a-6)2+20(a-3)<0
解得-2<a≤3(10分)
∵P∨Q是真命题且P∧Q是假命题,
∴P,Q有一个真命题一个假命题,
当p真Q假时,有无解
当Q真P假时,有
解得-2<a≤0或1≤a≤3. 
∴a的取值范围是-2<a≤0或1≤a≤3.                            (14分)
点评:解决复合命题的真假问题,应该根据真值表转化为构成复合命题的简单命题的真假问题来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(12分)已知命题P:函数在区间[-1,3]上的最小值等于2;命题Q:不等式对任意恒成立。如果上述两个命题中有且仅有一个真命题,试求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

   (文科学生做)已知命题p:函数在R上存在极值;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

 

(理科学生做)已知命题p:对,函数有意义;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

   (文科学生做)已知命题p:函数在R上存在极值;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

 

(理科学生做)已知命题p:对,函数有意义;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012届福建省邵武四中高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)(1)已知a>0且a1常数,求函数定义

域和值域;

(2)已知命题P:函数上单调递增;命题Q:不等式

 

对任意实数恒成立;若是真命题,求实数的取值范

 

查看答案和解析>>

同步练习册答案