精英家教网 > 高中数学 > 题目详情

【题目】已知,,点满足,记点的轨迹为.

(1)求轨迹的方程;

(2)若直线过点且与轨迹交于两点.

(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.

(ii)在(i)的条件下,求面积的最小值.

【答案】(1)(2)(i)(ii)9

【解析】

(1)利用双曲线的定义及其标准方程即可得出;(2)当直线l的斜率存在时,设直线方程为y=k(x-2),P,Q,与双曲线方程联立消y,利用根与系数的关系、判别式解出即可得出.(i)利用向量垂直与数量积的关系、根与系数的关系即可得出;(ii)利用点到直线的距离公式、弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出

1)由知,点P的轨迹E是以F1、F2为焦点的双曲线右支,由,故轨迹E的方程为

(2)当直线l的斜率存在时,设直线方程为,与双曲线方程联立消y

解得k2 >3

(i)

故得对任意的恒成立,

∴当m =-1时,MP⊥MQ.

当直线l的斜率不存在时,由知结论也成立,

综上,当m =-1时,MP⊥MQ.

(ii)由(i)知,,当直线l的斜率存在时,

, M点到直线PQ的距离为,则

,则,因为

所以

当直线l的斜率不存在时,

综上可知,故的最小值为9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线交椭圆两点,交轴于点,若,求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查.抽取的100人的数学与地理的水平测试成绩如下表:

人数

数学

优秀

良好

及格

地理

优秀

7

20

5

良好

9

18

6

及格

a

4

b

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人.

(1)在该样本中,数学成绩优秀率是30%,求a,b的值;

(2)在地理成绩及格的学生中,已知a≥10,b≥7,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某公司2001年至2017年新产品研发费用(单位:万元)的折线图.为了预测该公司2019年的新产品研发费用,建立了与时间变量的两个线性回归模型.根据2001年至2017年的数据(时间变量的值依次为1,2,…,17)建立模型①;根据2011年至2017年的数据(时间变量的值依次为1,2,…,7)建立模型②

(1)分别利用这两个模型,求该公司2019年的新产品研发费用的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为数列的前项和,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE△BCF均为正三角形,EF∥ABEF2,则该多面体的体积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市预测2000年到2004年人口总数与年份的关系如下表所示

年份200x(年)

0

1

2

3

4

人口数y(十)万

5

7

8

11

19

(1)请根据上表提供的数据,计算,用最小二乘法求出关于的线性回归方程

(2) 据此估计2005年该城市人口总数。

(参考数值:0×5+1×7+2×8+3×11+4×19=132,

参考公式:用最小二乘法求线性回归方程系数公式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知数列中,,前项和

1)求数列的通项公式;

2)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论函数的单调性;

(2)若函数有两个不同的零点,求实数的取值范围;

(3)在(2)的条件下,求证:

查看答案和解析>>

同步练习册答案