分析 在△ABC中,BC=2,AC-AB=1,△ABC的面积为,由余弦定理的4=b2+c2-2bccosA…①
b2+c2-2bc=1…②,$\frac{1}{2}bcsinA=\sqrt{3}$…③
由①②③得:cosA,sinA,bc
解答 解:在△ABC中,BC=2,AC-AB=1,△ABC的面积为,由余弦定理的4=b2+c2-2bccosA…①
b2+c2-2bc=1…②,$\frac{1}{2}bcsinA=\sqrt{3}$…③
由①②③得:$\frac{1-cosA}{sinA}=\frac{\sqrt{3}}{4}$⇒tan$\frac{A}{2}$=$\frac{\sqrt{3}}{4}$⇒cosA=$\frac{1-ta{n}^{2}\frac{A}{2}}{1+ta{n}^{2}\frac{A}{2}}=\frac{13}{19}$,sinA=$\frac{2tan\frac{A}{2}}{1+ta{n}^{2}\frac{A}{2}}$=$\frac{8\sqrt{3}}{19}$,bc=$\frac{19}{4}$,∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=bc×cosA=$\frac{13}{4}$.
故答案为:$\frac{13}{4}$
点评 本题考查了解三角形的运算,及向量运算,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-\frac{1}{3},+∞})$ | B. | $({-\frac{1}{3},0})∪({0,+∞})$ | C. | $[{-\frac{1}{3},+∞})$ | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+y+1=0 | B. | x-y+1=0 | C. | x+y-1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=sin(2x+$\frac{π}{6}$) | B. | f(x)=cos(2x+$\frac{π}{3}$) | C. | f(x)=sin(2x-$\frac{π}{6}$) | D. | f(x)=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com