精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-ax+a(a∈R) 同时满足:①函数f(x)有且只有一个零点;②在定义域内存在0<x1<x2,使不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n) (n∈N*
(1)求f(x)和an
(2)在各项均不为零的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为数列{cn}的变号数.令cn=1-
4an
,求数列{cn}的变号数.
分析:(1)由①函数f(x)有且只有一个零点可得△=0;②在定义域内存在0<x1<x2,使不等式f(x1)>f(x2)成立,存在大于0的单调递减区间,即对称轴
a
2
>0
.即可得出a的取值范围;即可得出f(n)=Sn,再利用an=Sn-Sn-1(n≥2)即可得出an
(2)由(1)可得cn,解出cncn+1<0即可得出数列{cn}的变号数.
解答:解:(1)∵函数f(x)同时满足:①函数f(x)有且只有一个零点;②在定义域内存在0<x1<x2,使不等式f(x1)>f(x2)成立,
△=a2-4a=0
a
2
>0
,解得a=4.
∴f(x)=x2-4x+4.
Sn=f(n)=n2-4n+4
当n=1时,a1=S1=1-4n+4=1.
当n≥2时,an=Sn-Sn-1=n2-4n+4-[(n-1)2-4(n-1)+4]=2n-5.
an=
1,n=1
2n-5,n≥2

(2)①n=1时,c1=1-
4
a1
=1-4=-3,c2=1-
4
a2
=1-
4
(2×2-5)
=5,此时c1c2<0,因此n=1满足条件;
②n≥2时,cn•cn+1=(1-
4
an
)(1-
4
an+1
)
=
2n-9
2n-5
2n-7
2n-3
<0?(2n-3)(2n-5)(2n-7)(2n-9)<0,n∈N*,解得n=2,4.
综上可知:数列{cn}的变号数是3.
点评:本题综合考查了二次函数的零点、单调性、数列an与Sn的关系、新定义(变号数)、分类讨论等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案