精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=x2+bx+c,当x∈R时f(x)=f(2﹣x)恒成立,且3是f(x)的一个零点. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=f(ax)(a>1),若函数g(x)在区间[﹣1,1]上的最大值等于5,求实数a的值.

【答案】解:(Ⅰ)由x∈R时f(x)=f(2﹣x)恒成立得函数的图像关于直线x=1对称;, ∴ =1.解得:b=﹣2
又v的一个零点,
∴9﹣6+c=0.解得:c=﹣3.
∴f(x)=x2﹣2x﹣3
(Ⅱ)设t=ax , (a>1),
∵x∈[﹣1,1],
∴t∈[ ,a]
若f(a)=5,则由a2﹣2a﹣3=5得a=4,或a=﹣2(舍去),此时f(a)>f( ),符合题意;
若f( )=5,则可得a= (舍去),或a=﹣ (舍去),
∴a=4
【解析】(I)由已知可f(x)=f(2﹣x)恒成立,且3是f(x)的一个零点,求出b,c的值,可得函数f(x)的解析式;(Ⅱ)设t=ax(a>1),由x∈[﹣1,1],可得:t∈[ ,a],结合函数g(x)在区间[﹣1,1]上的最大值等于5,分类讨论,可得满足条件的a值.
【考点精析】通过灵活运用函数的最值及其几何意义和二次函数的性质,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣a是奇函数
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)<m﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式xf(x)≤0的解集为(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x+2)为偶函数,若g(x)= ,则a= , g[g(﹣ )]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线 交椭圆于 两不同的点.

(1)求椭圆的方程;

(2)若直线不过点,求证:直线 轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)的奇偶性,并证明.
(2)求函数f(x)的单调性及值域.

查看答案和解析>>

同步练习册答案