【题目】下列命题中:
①已知函数的定义域为,则函数的定义域为;
②若集合中只有一个元素,则;
③函数在上是增函数;
④方程的实根的个数是1.
所有正确命题的序号是______(请将所有正确命题的序号都填上).
科目:高中数学 来源: 题型:
【题目】将向量=(, ), =(, ),…=(,)组成的系列称为向量列{},并定义向量列{}的前项和.如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列。若向量列{}是等差向量列,那么下述四个向量中,与一定平行的向量是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,当时,满足.
(1)求证:;
(2)求证:数列为等差数列;
(3)若,公差,问是否存在,,使得?如果存在,求出所有满足条件的,,如果不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)为了解该种蛋糕的市场需求情况与性別是否有关,随机统计了100人的购买情况,得如下列联表:
男 | 女 | 合计 | |
购买 | 15 | 35 | 50 |
不购买 | 6 | 44 | 50 |
合计 | 21 | 79 | 100 |
问:能否有的把握认为是否购买蛋糕与性別有关?
附:
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.
(1)求证:AE//平面PDC;
(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级有男生220人,学籍编号为1,2,…,220;女生380人,学籍编号为221,222,…,600.为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),再从这10名学生中随机抽取3人进行座谈,则这3人中既有男生又有女生的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com